• 제목/요약/키워드: CdS nanoparticles

검색결과 36건 처리시간 0.018초

실리카 나노입자 표면에 CdS 나노입자의 제조 및 평가 (Preparation and characterization of CdS nanoparticle on the surface of silica nanoparticles)

  • 강은옥;최성호;;이광필
    • 분석과학
    • /
    • 제20권5호
    • /
    • pp.413-418
    • /
    • 2007
  • 방사선 방법에 의해 실리카 나노입자에 CdS 나노입자를 코팅하였다. TEM분석결과, $SiO_2$ 나노입자 표면에 CdS의 입자의 크기는 대략 20 nm임을 확인 하였다. 또한, XRD 분석결과 결정체 화합물임을 확인하였다. PL 분석결과 PVP-CdS 나노입자와 $SiO_2$@CdS 복합체의 경우, 방출특성이 상당히 다르다는 것이 확인되었다. PVP-CdS의 경우, 방출스펙트럼이 550 nm-600 nm 에서 나타나고, $SiO_2$@CdS의 방출스펙트럼의 경우 단파장 이동함을 확인하였다. 또한 새로운 피이크 (450 nm) 나타남을 확인하였는데, 이는 CdS 의 유발양자 제한 효과에 의한 것으로 사료된다.

Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila

  • Malarkodi, C.;Rajeshkumar, S.;Paulkumar, K.;Jobitha, G. Gnana;Vanaja, M.;Annadurai, G.
    • Advances in nano research
    • /
    • 제1권2호
    • /
    • pp.83-91
    • /
    • 2013
  • The synthesis of semiconductor nanoparticles is a growing research area due to the prospective applications for the development of novel technologies. In this paper we have reported the biosynthesis of Cadmium sulfide nanoparticles (CdSNPs) by reduction of cadmium sulphate solution, using the bacteria of Serratia nematodiphila. The process for the synthesis of CdS nanoparticles is fast, novel and ecofriently. Formation of the CdS nanoparticles was confirmed by surface Plasmon spectra using UV-Vis spectrophotometer and absorbance strong peak at 420 nm. The morphology of crystalline phase of nanoparticles was determined from Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy and X-ray diffraction (XRD) spectra. The average size of CdS nanoparticles was in the range of 12 nm and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of CdS nanoparticles in the colloidal solution. Antibacterial activity against some bacteria such as Bacillus subtilis, Klebsiella planticola. CdS nanoparticles exhibiting good bactericidal activity.

Preparation and Characterization of Porous and Composite Nanoparticulate Films of CdS at the Air/Water Interface

  • Ji, Guanglei;Chen, Kuang-Cai;Yang, Yan-Gang;Xin, Guoqing;Lee, Yong-Ill;Liu, Hong-Guo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2547-2552
    • /
    • 2010
  • CdS nano-particulate films were prepared at the air/water interface under Langmuir monolayers of arachidic acid (AA) via interfacial reaction between $Cd^{2+}$ ions in the subphase and $H_2S$ molecules in the gaseous phase. The films were made up of fine CdS nanoparticles with hexagonal Wurtzite crystal structure after reaction. It was revealed that the formation of CdS nano-particulate films depends largely on the experimental conditions. When the films were ripened at room temperature or an increased temperature ($60^{\circ}C$) for one day, numerous holes were appeared due to the dissolution of smaller nanoparticles and the growth of bigger nanoparticles with an improved crystallinity. When the films were ripened further, CdS rodlike nanoparticles with cubic zinc blende crystal structure appeared due to the re-nucleation and growth of CdS nanoparticles at the stacking faults and defect structures of the hexagonal CdS grains. These structures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction (XRD). These results declare that CdS semiconductor nanoparticles formed at the air/water interface change their morphologies and crystal structures during the ripening process due to dissolution and recrystallization of the particles.

$Cd(SOCCH_3)_2Lut_2$를 이용한 CdS 나노입자의 용이한 합성 방법 및 광학적 특성 (One-pot Synthesis of CdS Nanoparticles by Using $Cd(SOCCH_3)_2Lut_2$ Precusor and Their Optical Characteristics)

  • 장승현
    • 통합자연과학논문집
    • /
    • 제2권4호
    • /
    • pp.285-288
    • /
    • 2009
  • A synthetic route for 12 metal thiocarboxylate complex, $Cd(SOCCH_3)_2Lut_2$ [Lut = 3,5-dimethylpyridine (lutidine)], were investigated for their potential to act as precursors for the formation of cadmium sulfide nanoparticles. $Cd(SOCCH_3)_2Lut_2$ were characterized by 1H-NMR spectroscopy. Thermal decomposition of $Cd(SOCCH_3)_2Lut_2$ is expected to undergo thiocarboxylic anhydride elimination to give stoichiometric cadmium sulfide nanoparticles and removes the organic supporting ligands cleanly. Prepared cadmium sulfide nanoparticles were characterized by fluorescence and UV-vis absorption spectroscopy and displayed an emission band at 500 nm with an excitation wavelength of 360 nm.

  • PDF

무유화 유화중합에 의해 합성된 Core/shell 형태 PMMA/CdS 나노입자의 특성분석 (Characterization of Core/Shell PMMA/CdS Nanoparticles Synthesized by Surfactant-free Emulsion Polymerization)

  • 윤효정;임영목;심상은
    • 접착 및 계면
    • /
    • 제13권4호
    • /
    • pp.188-192
    • /
    • 2012
  • in-situ 무유화 유화중합 및 후속 CdS 코팅 공정으로 이루어진 방법을 이용하여 CdS로 코팅된 PMMA 나노입자를 제조하고 그 특성을 분석하였다. 합성된 CdS/PMMA 나노입자의 크기는 201.7 nm 였으며, TGA 및 원소 분석 결과 10.37 wt%의 CdS를 함유하고 있었다. PMMA 입자 표면에 코팅된 CdS 나노결정의 크기는 3.55 nm였으며 주로 (111) 결정면으로 성장되었다. UV-vis 분석 결과 blue-shifting 현상이 관찰되었으며, 이는 CdS/PMMA 하이브리드 입자상태에서의 CdS는 벌크 상태의 CdS가 갖는 2.41 eV의 밴드갭 에너지보다 큰 2.70 eV를 갖기 때문에 발생하는 양자구속효과에 의하여 기인하였다.

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • 제12권3호
    • /
    • pp.104-112
    • /
    • 2012
  • Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.

이온성 액체에 의한 CdSe/ZnS 나노입자의 상과 크기제어 합성 (Phase-and Size-Controlled Synthesis of CdSe/ZnS Nanoparticles Using Ionic Liquid)

  • 송윤미;장동명;박기영;박정희;차은희
    • 전기화학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2011
  • 이온성 액체는 일정한 온도 범위에서 액체로 존재하는 이온성 염으로, 유기 양이온과 유기 또는 무기 음이온의 이온결합으로 이루어져 있다. 본 연구에서는 이온성 액체를 CdSe/ZnS 반도체 나노입자 합성의 리간드 및 용매로 사용하여 이들이 나노입자의 형태와 결정 구조에 미치는 영향에 대해서 연구하였다. CdSe/ZnS 나노입자는 용매로 알킬기의 길이가 다른 imidazolium 계열; 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([RMIM][TFSI]), R = ethyl ([EMIM]), butyl ([BMIM]), hexyl ([HMIM]), octyl ([OMIM]), 을 사용하여, 평균 크기는 약 8~9 nm 이고 두 상 zinc-blende 및 wurtzite 혼합물로 합성하는 것을 성공하였다. 또한, CdSe/ZnS 나노입자는 trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([$P_{6,6,6,14}$][TFSI]) 이온성 액체와 octadecene (ODE)의 혼합 용액을 사용하여 합성하였다. [$P_{6,6,6,14}$][TFSI]의 부피비가 증가함에 따라 나노입자의 결정 구조가 zinc-blende 구조에서 wurtzite 구조로 조절되었다. 또한 나노입자의 평균 크기는 약 5.5 nm 로써 [RMIM][TFSI] 를 사용했을 때 보다 더 작게 합성되었다. 이처럼 이온성 액체에 의해서 나노입자의 크기뿐 만 아니라 결정 구조도 조절할 수 있음을 처음으로 증명하였다.

Spectrophotometric Determination of Maximum Loading Capacity of a Dendrimer

  • Youngjin Jeon
    • 대한화학회지
    • /
    • 제67권4호
    • /
    • pp.217-221
    • /
    • 2023
  • A series of hydrophobic dodecyl-terminated 6th-generation poly(amidoamine) dendrimer (H)-encapsulated cadmium sulfide ((CdS)n@H) nanoparticles in a co-solvent (toluene: methanol = 6.8: 3.2 v/v) are synthesized. The diameters of CdS nanoparticles within the dendrimer were estimated by analyzing the positions of the first excitonic absorption peaks of CdS in UV-vis spectra. The size of the CdS nanoparticle within the dendrimer shows a saturation value as the CdS/H ratio (n) increases, which is believed to be due to the limited physical size of the void cavity within the dendrimer. This simple and convenient method of estimating the saturation of the size of CdS in dendrimers may be useful in determining the maximum void space within other dendrimers under various solvent conditions.

CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution

  • Ock, Kwang-Su;Ganbold, Erdene-Ochir;Jeong, Sae-Ro-Mi;Seo, Ji-Hye;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3610-3613
    • /
    • 2011
  • CdS nanoparticles (NPs) were synthesized in an aqueous phase in order to investigate their spectral behaviors as efficient fluorescence resonance energy transfer (FRET) donors for various organic dye acceptors. Our prepared CdS NPs exhibiting strong and broad emission spectra between 480-520 nm were able to transfer energy in a wide wavelength region from green to red fluorescence dyes. Rhodamine 6G (Rh6G), rhodamine B (RhB), and sulforhodamine 101 acid (Texas red) were tested as acceptors of the energy transfer from the CdS NPs. The three dyes and synthesized CdS NPs exhibited good FRET behaviors as acceptors and donors, respectively. Energy transfers from the CdS NPs and organic Cy3 dye were compared to the same acceptor Texas red dye at different concentrations. Our prepared CdS NPs appeared to exhibit better FRET behaviors comparable to those of the Cy3 dye. These CdS NPs in an aqueous solution may be efficient FRET donors for various organic dyes in a wide wavelength range between green and red colors.