DOI QR코드

DOI QR Code

Preparation and Characterization of Porous and Composite Nanoparticulate Films of CdS at the Air/Water Interface

  • Ji, Guanglei (College of Resources and Environmental Sciences, University of Jinan) ;
  • Chen, Kuang-Cai (Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University) ;
  • Yang, Yan-Gang (Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University) ;
  • Xin, Guoqing (Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University) ;
  • Lee, Yong-Ill (Department of Chemistry, Changwon National University) ;
  • Liu, Hong-Guo (Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University)
  • Received : 2010.01.16
  • Accepted : 2010.07.19
  • Published : 2010.09.20

Abstract

CdS nano-particulate films were prepared at the air/water interface under Langmuir monolayers of arachidic acid (AA) via interfacial reaction between $Cd^{2+}$ ions in the subphase and $H_2S$ molecules in the gaseous phase. The films were made up of fine CdS nanoparticles with hexagonal Wurtzite crystal structure after reaction. It was revealed that the formation of CdS nano-particulate films depends largely on the experimental conditions. When the films were ripened at room temperature or an increased temperature ($60^{\circ}C$) for one day, numerous holes were appeared due to the dissolution of smaller nanoparticles and the growth of bigger nanoparticles with an improved crystallinity. When the films were ripened further, CdS rodlike nanoparticles with cubic zinc blende crystal structure appeared due to the re-nucleation and growth of CdS nanoparticles at the stacking faults and defect structures of the hexagonal CdS grains. These structures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction (XRD). These results declare that CdS semiconductor nanoparticles formed at the air/water interface change their morphologies and crystal structures during the ripening process due to dissolution and recrystallization of the particles.

Keywords

References

  1. Torimoto, T.; Kontani, H.; Shibutani, Y.; Kuwabata, S.; Sakata, T.; Mori, H.; Yoneyama, H. J. Phys. Chem. B 2001, 105, 6838. https://doi.org/10.1021/jp0109271
  2. Liang, H.; Angelini, T. E.; Braun, P. V.; Wong, G. C. L. J. Am. Chem. Soc. 2004, 126, 14157. https://doi.org/10.1021/ja046718m
  3. Liu, X.-L.; Zhu, Y.-J. Mater. Lett. 2009, 63, 1085. https://doi.org/10.1016/j.matlet.2009.02.016
  4. Senthil, K.; Mangalaraj, D.; Narayandass, S. K.; Kesavamoorthy, R.; Reddy, G. L. N. Nucl. Instr. and Meth. in Phys. Res. B 2001, 173, 475. https://doi.org/10.1016/S0168-583X(00)00409-2
  5. Ximello-Quiebras, J. N.; Mejía-García, C.; Caballero-Rosas, A.; Hernandez-Contreras, H.; Contreras-Puente, G.; Vidal, J.; Pascher, H. Thin Solid Films 2003, 431-432, 223. https://doi.org/10.1016/S0040-6090(03)00233-5
  6. Choi, J. W.; Bhupathiraju, A.; Hasan, M.-A.; Lannon, J. M. J. Cryst. Growth 2003, 255, 1. https://doi.org/10.1016/S0022-0248(03)01150-3
  7. Uda, H.; Yonezawa, H.; Ohtsubo, Y.; Kosaka, M.; Sonomura, H. Solar Energy Materials Solar Cells 2003, 75, 219. https://doi.org/10.1016/S0927-0248(02)00163-0
  8. Baykul, M.C.; Balcioglu, A. Microelectronic Engineering 2000, 51-52, 703. https://doi.org/10.1016/S0167-9317(99)00534-1
  9. Hiie, J.; Dedova, T.; Valdna, V.; Muska, K. Thin Solid Films 2006, 511-512, 443 https://doi.org/10.1016/j.tsf.2005.11.070
  10. Torimoto, T.; Nagakubo, S.; Nishizawa, M.; Yoneyama, H. Langmuir 1998, 14, 7077. https://doi.org/10.1021/la980364t
  11. Zhang, Y.; Mu, J. Colloids Surf. A 2005, 262, 238. https://doi.org/10.1016/j.colsurfa.2005.05.009
  12. Yang, J.; Meldrum, F. C.; Fendler, J. H. J. Phys. Chem. 1995, 99, 5500. https://doi.org/10.1021/j100015a037
  13. Pan, Z. Y.; Liu, X. J.; Zhang, S. Y.; Shen, G. J.; Zhang, L. G.; Lu, Z. H.; Liu, J. Z. J. Phys. Chem. B 1997, 101, 9703. https://doi.org/10.1021/jp9718212
  14. Berman, A.; Charych, D. Adv. Mater. 1999, 11, 296. https://doi.org/10.1002/(SICI)1521-4095(199903)11:4<296::AID-ADMA296>3.0.CO;2-F
  15. Xiao, F.; Liu, H.-G.; Wang, C.-W.; Lee, Y.-I.; Xue, Q.; Chen, X.; Hao, J.; Jiang, J. Nanotechnology 2007, 18, 435603. https://doi.org/10.1088/0957-4484/18/43/435603
  16. Zhao, X. K.; McCormick, L.; Fendler, J. H. Chem. Mater. 1991, 3, 922. https://doi.org/10.1021/cm00017a031
  17. Yi, K. C.; Fendler, J. H. Langmuir 1990, 6, 1519. https://doi.org/10.1021/la00099a015
  18. Yuan, Y.; Cabasso, I.; Fendler, J. H. Chem. Mater. 1990, 2, 226. https://doi.org/10.1021/cm00009a007
  19. Zhao, X. K.; Fendler, J. H. Chem. Mater. 1991, 3, 168. https://doi.org/10.1021/cm00013a035
  20. Zhao, X. K.; Xu, S.; Fendler, J. H. Langmuir 1991, 7, 520. https://doi.org/10.1021/la00051a018
  21. Zhao, X. K.; Fendler, J. H. J. Phys. Chem. 1991, 95, 3716. https://doi.org/10.1021/j100162a051
  22. Yu, W. L.; Huang, W.; Zhu, B. Y.; Zhao, G. X. Mater. Lett. 1997, 33, 221. https://doi.org/10.1016/S0167-577X(97)00104-3
  23. Yang, H.; Coombs, N.; Sokolov, I.; Ozin, G. A. Nature 1996, 381, 589. https://doi.org/10.1038/381589a0
  24. Chen, H.; Dong, S. Langmuir 2007, 23, 12503. https://doi.org/10.1021/la702279b
  25. Xin, G.-Q.; Ding, H.-P.; Yang, Y.-G.; Shen, S.-L.; Xiong, Z.-C.; Chen, X.; Hao, J.; Liu, H.-G. Cryst. Growth Des. 2009, 9, 2008. https://doi.org/10.1021/cg800717j
  26. Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi, W.; Hoffmann, M. R. J. Phys. Chem. C 2008, 112, 12069. https://doi.org/10.1021/jp8037279
  27. Lincot, D.; Mokili, B.; Froment, M.; Cortes, R.; Bernard, M. C.; Witz, C.; Lafait, J. J. Phys. Chem. B 1997, 101, 2174. https://doi.org/10.1021/jp962399c
  28. Zelaya-Angel, O.; Hernandez, L.; de Melo, O.; Alvarado-Gil, J. J.; Lozada-Morales, R.; Falcony, C.; Vargas, H.; Ramirez-Bon, R. Vaccum 1995, 46, 1083. https://doi.org/10.1016/0042-207X(95)00111-5
  29. Sisman, I.; Alanyalioglu, M.; Demir, U. J. Phys. Chem. C 2007, 111, 2670. https://doi.org/10.1021/jp066393r
  30. Li, M.; Ouyang, J.; Ratcliffe, C. I.; Pietri, L.; Wu, X.; Leek, D. M.; Moudrakovski, I.; Lin, Q.; Yang, B.; Yu, K. ACS Nano 2009, 3, 3832. https://doi.org/10.1021/nn9009455