• Title/Summary/Keyword: Porous Film

Search Result 444, Processing Time 0.03 seconds

Structure of Oxide Film Prepared by Two-step Anodization of Aluminum

  • Ko, Eunseong;Ryu, Jaemin;Kang, Jinwook;Tak, Yongsug
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.137-140
    • /
    • 2006
  • The effect of pre-existing barrier-type film on porous aluminum oxide film formation during anodization was investigated to control the uniform film growth rate. Initial potential fluctuations during anodization indicated that the breakdown of barrier-film is preceded before the porous formation and the induction time for the porous film growth increases with the increases of pre-existing film thickness. The porous film growth mechanism is lot affected by the presence of barrier film on aluminum surface. In parallel, uniform growth of barrier film underneath the porous structure was attained by two-step anodization processes.

Preparation and Characterization of Porous Polymethylmethacrylate Film Showing Optical Reflectivity

  • Kim, Jihoon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.82-86
    • /
    • 2013
  • This paper describes a method for the preparation of porous polymethylmethacrylate showing optical reflectivity from the porous silicon template. A porous polymethylmethacrylate showing optical reflectivity was prepared by replicating porous silicon template which was obtained by applying a computer-generated periodic square current density and resulted in a mirror with high reflectivity in a specific narrow spectral region. A porous polymethylmethacrylate showing an excellent reflectivity was successfully obtained by dissolving the Porous silicon template from the porous polymethylmethacrylate composite film. A porous polymethylmethacrylate exhibited a sharp reflection resonance in the reflectivity spectrum. Surface image of the porous polymethylmethacrylate indicated that the surface of the porous polymethylmethacrylate film had a porous structure. These porous polymethylmethacrylate films in aqueous solutions were stable for several days without any degradation.

Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon

  • Lee, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2013
  • Well defined 1-dimentional (1-D) photonic crystals of polystyrene replicas have been successfully obtained by removing the porous silicon from the free-standing rugate porous silicon/phenylmethylpolysiloxane composite film. Rugate porous silicon was prepared by an electrochemical etching of silicon wafer in HF/ethanol mixture solution. Exfoliated rugate porous silicon was obtained by an electropolishing condition. A composite of rugate porous silicon/phenylmethylpolysiloxane composite film was prepared by casting a toluene solution of phenylmethylpolysiloxane onto the top of rugate porous silicon film. After the removal of the template by chemical dissolution, the phenylmethylpolysiloxane castings replicate the photonic features and the nanostructure of the master. The photonic phenylmethylpolysiloxane replicas are robust and flexible in ambient condition and exhibit an excellent reflectivity in their reflective spectra. The photonic band gaps of replicas are narrower than that of typical semiconductor quantum dots.

Microstructure and Morphology of Titanium Thin Films Deposited by Using Shadow Effect (그림자효과를 이용하여 증착한 타이타늄 박막의 미세구조 및 형상)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.709-714
    • /
    • 2019
  • In order to observe the microstructure and morphology of porous titanium -oxide thin film, deposition is performed under a higher Ar gas pressure than is used in the general titanium thin film production method. Black titanium thin film is deposited on stainless steel wire and Cu thin plate at a pressure of about 12 Pa, but lustrous thin film is deposited at lower pressure. The black titanium thin film has a larger apparent thickness than that of the glossy thin film. As a result of scanning electron microscope observation, it is seen that the black thin film has an extremely porous structure and consists of a separated column with periodic step differences on the sides. In this configuration, due to the shadowing effect, the nuclei formed on the substrate periodically grow to form a step. The surface area of the black thin film on the Cu thin plate changes with the bias potential. It has been found that the bias of the small negative is effective in increasing the surface area of the black titanium thin film. These results suggest that porous titanium-oxide thin film can be fabricated by applying the appropriate oxidation process to black titanium thin film composed of separated columns.

An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface (다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구)

  • Lee Dae Young;Lee Jae Wan;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

The properties and effects of the electrodeposited CdTe compound film on the porous silicon (다공질규소에 전착된 CdTe 화합물 박막의 특성과 효과)

  • 김영유;이춘우;류지욱;홍사용;박대규;육근철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 1999
  • The properties and effects of the electrodeposited CdTe compound film on the porous silicon. To find ways to achieve good mechanical contact on the nanostructure porous silicon layer while keeping the interface transparent, we tried to electrodeposit a CdTe compound film on the porous silicon surface. The CdTe compound film was fabricated with -2.3V vs. Ag/AgCl potential difference in the electrolyte solution containing 1M of $CdSO_4$and 1 mM of $TeO_4$. X-ray diffraction results confirmed the existence of CdTe compound film on the porous silicon surface. Auger depth profile showed that Cd and Te were uniformly distributed up to a 80 nm distance from the surface. The photoluminescence of the sample with a CdTe compound film was weaker in intensity than that without the film and the maximum wavelength was shifted to the higher energy. These results indicate that the contacting CdTe compound film was infiltrated to the nanostructure of porous silicon.

  • PDF

Experimental Study on the Hydrophilic Porous Film Coating for Evaporative Cooling Enhancement

  • Lee, Dae-Young;Lee, Jae-Wan;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface to form a thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this respect, hydrophilic treatment of the surface has been tried to improve the surface wettability by decreasing the contact angle between the liquid and the surface. However, the hydrophilic treatment was found not very effective to increase the surface wettedness of inclined surfaces, since the liquid flow forms rivulet patterns instead of a thin film as it flows down the inclined surface and accelerates gradually by the gravity. In this work, a novel method is suggested to improve the surface wettedness enormously. In this work, the surface is treated to have a thin hydrophilic porous layer on the surface. With this treatment, the liquid can spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of inclined surfaces has been conducted to verify the effectiveness of the surface treatment. It is measured that the latent heat transfer increases almost by $80\%$ at the hydrophilic porous layer coated surface as compared with the untreated surface.

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreeze Solution

  • Chang Young-Soo;Yun Won-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.66-75
    • /
    • 2006
  • The effect of antifreeze solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreeze solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation while having small thermal resistance across the film. A porous layer coating technique is adopted to improve the wettability of the antifreeze solution on a parallel plate heat exchanger. The antifreeze solution spreads widely on the heat exchanger surface with $100{\mu}m$ thickness by the capillary force resulted from the porous structure. It is observed that the antifreeze solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by the thin liquid film are only $1{\sim}2%$ compared with those for non-liquid film surface.

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.