DOI QR코드

DOI QR Code

Phase-and Size-Controlled Synthesis of CdSe/ZnS Nanoparticles Using Ionic Liquid

이온성 액체에 의한 CdSe/ZnS 나노입자의 상과 크기제어 합성

  • Received : 2010.07.30
  • Accepted : 2010.10.10
  • Published : 2011.02.28

Abstract

Ionic liquids are room-temperature molten salts, composed of organic mostly of organic ions that may undergo almost unlimited structural variation. We approach the new aspects of ionic liquids in applications where the semiconductor nanoparticles used as sensitizers of solar cells. We studied the effects of ionic liquids as capping ligand and/or solvent, on the morphology and phase of the CdSe/ZnS nanoparticles. Colloidal CdSe/ZnS nanoparticles were synthesized using a series of imidazolium ionic liquids; 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([RMIM][TFSI]), where R = ethyl ([EMIM]), butyl ([BMIM]), hexyl ([HMIM]), octyl ([OMIM]). The average size of nanoparticles was 8~9 nm, and both zinc-blende and wurtzite phase was produced. We also synthesized the nanoparticles using a mixture of trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([$P_{6,6,6,14}$][TFSI]) and octadecene (ODE). The CdSe/ZnS nanoparticles have a smaller size (5.5 nm) than that synthesized using imidazolium, and with a controlled phase from zinc-blende to wurtzite by increasing the volume ratio of [$P_{6,6,6,14}$][TFSI]. For the first time, the phase and size control of the CdSe/ZnS nanoparticles was successfully demonstrated using those ionic liquids.

이온성 액체는 일정한 온도 범위에서 액체로 존재하는 이온성 염으로, 유기 양이온과 유기 또는 무기 음이온의 이온결합으로 이루어져 있다. 본 연구에서는 이온성 액체를 CdSe/ZnS 반도체 나노입자 합성의 리간드 및 용매로 사용하여 이들이 나노입자의 형태와 결정 구조에 미치는 영향에 대해서 연구하였다. CdSe/ZnS 나노입자는 용매로 알킬기의 길이가 다른 imidazolium 계열; 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([RMIM][TFSI]), R = ethyl ([EMIM]), butyl ([BMIM]), hexyl ([HMIM]), octyl ([OMIM]), 을 사용하여, 평균 크기는 약 8~9 nm 이고 두 상 zinc-blende 및 wurtzite 혼합물로 합성하는 것을 성공하였다. 또한, CdSe/ZnS 나노입자는 trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([$P_{6,6,6,14}$][TFSI]) 이온성 액체와 octadecene (ODE)의 혼합 용액을 사용하여 합성하였다. [$P_{6,6,6,14}$][TFSI]의 부피비가 증가함에 따라 나노입자의 결정 구조가 zinc-blende 구조에서 wurtzite 구조로 조절되었다. 또한 나노입자의 평균 크기는 약 5.5 nm 로써 [RMIM][TFSI] 를 사용했을 때 보다 더 작게 합성되었다. 이처럼 이온성 액체에 의해서 나노입자의 크기뿐 만 아니라 결정 구조도 조절할 수 있음을 처음으로 증명하였다.

Keywords

References

  1. J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, and Sergio R. Teixeira., ‘Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions’, J. Am. Chem. Soc., 124, 4228 (2002). https://doi.org/10.1021/ja025818u
  2. G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira, and Jairton Dupont., ‘The Use of Imidazolium Ionic Liquids for the Formation and Stabilization of $Ir^0\;and\;Rh^0$ Nanoparticles: Efficient Catalysts for the Hydrogenation of Arenes’, Chem. Eur. J., 9, 3263 (2003). https://doi.org/10.1002/chem.200304753
  3. H. Zhang and H. Cui., ‘Synthesis and Characterization of Functionalized Ionic Liquid-Stabilized Metal (Gold and Platinum) Nanoparticles and Metal Nanoparticle/Carbon Nanotube Hybrids’, Langmuir, 25, 2604 (2009). https://doi.org/10.1021/la803347h
  4. E. T. Silveira, A. P. Ump ierre, L. M. Ro ssi, G. Machado, J. Morais, G. V. Soar es, I. J. R. Baumvol, S. R. T eixeira, P. F. P. Fichtner, and J. Dupont, ‘The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids’, Chem. Eur. J., 10, 3734 (2004). https://doi.org/10.1002/chem.200305765
  5. Y.-J. Zhu, W.-W. Wang, R.-J. Qi, and X.-L. Hu, ‘Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids’, Angew. Chem. Int. Ed., 43, 1410 (2004). https://doi.org/10.1002/anie.200353101
  6. F. Endres, M. Bukowski, R. Hempelmann, and H. Natter, ‘Electrodeposition of Nanocrystalline Metals and Alloys from Ionic Liquids’, Angew. Chem. Int. Ed., 42, 3428 (2003). https://doi.org/10.1002/anie.200350912
  7. A. I. Bhatt, A. Mechler, L. L. Martin, and A. M. Bond, ‘Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation’, J. Mater. Chem., 17, 2241 (2007). https://doi.org/10.1039/b618036a
  8. Y. Zhou and M. Antonietti, ‘Synthesis of Very Small $TiO_2$ Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates’, J. Am. Chem. Soc., 125, 14960 (2003). https://doi.org/10.1021/ja0380998
  9. H. Zhu, J.-F. Huang, Z. Pan, and S. Dai, ‘Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors’, Chem. Mater., 18, 4473 (2006). https://doi.org/10.1021/cm060472y
  10. K. Biswas and C. N. R. Rao, ‘Use of Ionic Liquids in the Synthesis of Nanocrystals and Nanorods of Semiconducting Metal Chalcogenides’, Chem. Eur. J., 13, 6123 (2007). https://doi.org/10.1002/chem.200601733
  11. Y. Jiang and Y.-J. Zhu, ‘Microwave-Assisted Synthesis of Sulfide $M_2S_3$ (M = Bi, Sb) Nanorods Using an Ionic Liquid’, J. Phys. Chem. B., 109, 4361 (2005). https://doi.org/10.1021/jp044350+
  12. J. Jiang, S.-H. Yu, W.-T. Yao, H. Ge, and G.-Z. Zhang, ‘Morphogenesis and Crystallization of $Bi_2S_3$ Nanostructures by an Ionic Liquid-Assisted Templating Route : Synthesis, Formation Mechanism, and Properties’, Chem. Mater., 17, 6094 (2005). https://doi.org/10.1021/cm051632t
  13. P. J. Newman and D. R. MacFarlane, ‘Preparation of CdSe Quantum Dots in Ionic Liquids’, Z. Phys. Chem., 220, 1473 (2006). https://doi.org/10.1524/zpch.2006.220.10.1473
  14. M. Green, P. Rahmana and D. Smyth-Boyle, ‘Ionic liquid passivated CdSe nanocrystals’, Chem. Commun., 574 (2007).
  15. L. Tao, S. Pang, Y. An, H. Xu, and S. Wu, ‘Enhanced photoelectric activity of CdSe nanostructures with mixed crystalline phases’, Phys. Scr., 42, 014077 (5pp) (2010).
  16. J. Liu, J. Cao, Z. Li, G. Ji, S. Deng, M. Zheng, ‘Lowtemperature solid-state synthesis and phase-controlling studies of CdS nanoparticles’, J Mater Sci., 42, 1054 (2007). https://doi.org/10.1007/s10853-006-0964-0
  17. W. K. Bae, K. Char, H. Hur, and S. Lee, ‘Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients’, Chem. Mater., 20, 531 (2008). https://doi.org/10.1021/cm070754d
  18. P. Migowski, G. Machado, S. R. Texeira, M. C. M. Alves, Jonder Morais, Agnes Traversec, and Jairton Dupont., ‘Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids’, Phys. Chem. Chem. Phys., 9, 4814 (2007). https://doi.org/10.1039/b703979d
  19. Q.-T. Wang, X.-B. Wang, W.-J. Lou, and J.-C. Hao, ‘Stable Blue- and Green-Emitting Zinc Oxide from Ionic Liquid Crystal Precursors’, Chem. Phys. Chem., 10, 3201 (2009). https://doi.org/10.1002/cphc.200900566
  20. V. A. Fedorov, V. A. Ganshin, and Yu. N. Korkishko., ‘Determination of the Point of the Zincblende-to-Wurtzite Structural Phase Transition in Cadmium Selenide Crystals’, Phys. Status. Solidi. (a), 126, K5 (1991). https://doi.org/10.1002/pssa.2211260133
  21. J. W. Cho, H. S. Kim, Y. J. Kim, S. Y. Jang, J. Park, J.-G. Kim, Y.-J. Kim, and E. H. Cha, ‘Phase-Tuned Tetrapod- Shaped CdTe Nanocrystals by Ligand Effect’, Chem. Mater., 20(17), 5600 (2008). https://doi.org/10.1021/cm801359k

Cited by

  1. Bis((dialkylamino)alkylselenolato)metal complexes as precursors for microwave-assisted synthesis of semiconductor metal selenide nanoparticles of zinc and cadmium in the ionic liquid [BMIm][ BF4] vol.1, 2015, https://doi.org/10.1016/j.nanoso.2015.06.001