• Title/Summary/Keyword: CdS/ZnS

Search Result 640, Processing Time 0.029 seconds

A Study on the Cu-based $I-III-VI_2$ Compound Thin Film Solar Cells ($CulnSe2$계 화합물 박막 태양전지 연구)

  • Yun JaeHo;Ahn SeJin;Kim SeokKi;Lee JeongChul;Song JinSoo;Kim Ki Hwan;Ahn Byung Tae;Yoon KyungHoon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.6-10
    • /
    • 2005
  • [ $CulnSe2$ ]계 화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. CIS 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 질공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $17\%(CIGS)$$7\%(CGS)$의 효율을 얻었다.

  • PDF

Development and Applications of TOF-MEIS (Time-of-Flight - Medium Energy Ion Scattering Spectrometry)

  • Yu, K.S.;Kim, Wansup;Park, Kyungsu;Min, Won Ja;Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We have developed and commercialize a time-of-flight - medium energy ion scattering spectrometry (TOF-MEIS) system (model MEIS-K120). MEIS-K120 adapted a large solid acceptance angle detector that results in high collection efficiency, minimized ion beam damage while maintaining a similar energy resolution. In addition, TOF analyzer regards neutrals same to ions which removes the ion neutralization problems in absolute quantitative analysis. A TOF-MEIS system achieves $7{\times}10^{-3}$ energy resolution by utilizing a pulsed ion beam with a pulse width 350 ps and a TOF delay-line-detector with a time resolution of about 85 ps. TOF-MEIS spectra were obtained using 100 keV $He^+$ ions with an ion beam diameter of $10{\mu}m$ with ion dose $1{\times}10^{16}$ in ordinary experimental condition. Among TOF-MEIS applications, we report the quantitative compositional profiling of 3~5 nm CdSe/ZnS QDs, As depth profile and substitutional As ratio of As implanted/annealed Si, Ionic Critical Dimension (CD) for FinFET, Direct Recoil (DR) analysis of hydrogen in diamond like carbon (DLC) and InxGayZnzOn on glass substrate.

  • PDF

Development of High Efficiency CIGS Thin Film Solar Cells (고효율 CIGS 박막 태양전지 개발)

  • Yun, Jae-Ho;Song, Jin-Sub;Kim, Ki-Hwan;Kim, Min-Sik;Ahn, Byung-Tae;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.149-151
    • /
    • 2006
  • Cu계 $I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다 $CulnSe_2(CIS)$ 물질에서 In을 20-30% 정도 치환한 $Cu(In,Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판온도 모니터링 시스템을 도입하였으며 버퍼충으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 17.5%의 효율을 얻었다.

  • PDF

Study on the Chemical Characteristics of $PM_{10}$ at Background Area in Korean Peninsula (한반도 서해안 배경지역 미세입자의 화학적 특성 연구)

  • Bang So-Young;Baek Kwang-Wook;Chung Jin-Do;Nam Jae-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.455-468
    • /
    • 2004
  • The purpose of this paper is to understand the time series and origin of a chemical component and to compare the difference during yellow sand episodes for analysis $PM_{10}$ chemical components in the region of west in Korean Peninsula, 1999-2001. An annual mean concentration of $PM_{10}$ is $29.1\;{\mu}g/m^3$. A monthly mean and standard deviation of $PM_{10}$ concentration are very high in spring but there is no remarkably seasonal variation. Also, water soluble ionic component of $PM_{10}$ be influenced by double more total anion than total cation, be included $NO_{3}^-\;and\;SO_{4}^{2-}$ for the source of acidity and $NH_{4}^+$ to neutralize. Tracer metals of $PM_{10}$ slowly increases caused by emitted for soil and ocean (Fe, Al, Ca, Mg, Na) and Zn, Pb, Cu, Mn for anthropogenic source. According to method of enrichment factor (E.F) and statistics, assuming that the origin of metal component in $PM_{10}$ most of element in the Earth's crust e.g. Mg, Ca, Fe originates soil and Cu, Zn, Cd, Pb derives from anthropogenic sources. The ionic component for $Na^{+}\;Cl^-,\;Mg^{2+}\;and\;Ca^{2+}$ and Mg, Al, Ca, Fe originated by soil component largely increase during yellow sand period and then tracer metal component as Pb, Cd, Zn decrease. According to factor analysis, the first group is ionic component ($Na^+,\;Mg^{2+},\;Ca^{2+}$) and metal component (Na, Fe, Mn and Ni) be influenced by soil. The second group, Mg, Cr also be influenced by soil particle.

Aerosol Sampling with Two Stage Filter Sampler and Seasonal Variation of Metal Components in the Atmosphere (이단 필터 샘플러에 의한 대기 부유분진의 포집 및 금속 성분의 계절별 거동에 관한 연구)

  • Lee, Yong-Keun;Kim, Nam-Hoon;Myung, No-Seung;Whang, Kyu-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.20-27
    • /
    • 1988
  • A simple two stage aerosol filter sampler which allows simultaneous and fractional collection of two different-size particles, coarse and fine, was constructed and applied to the collection of Seoul atmospheric particulate for inorganic analysis. The sampler consist of two 47-mm diameter filter holder, a pneumatic pump, and a flowmeter. Filtering rate normally runs around 20$\ell$/min for 8 hrs. Using the sampler, a series of seasonal aerosol samples were collected from June 1986 to March 1988 at Yonsei University campus, Seoul and subsequently analysed for ten environmentally important metals using an atomic absorption spectrometer and an inductively coupled plasma emission spectrometer. The analysed metals are Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. The analytical results showed the following order of metal abundance; Al > Fe > Zn > Pb > Mn > Cu > V > Ni > Cr > Cd. Based upon their size distribution pattern, the analyzed matals could be clasified into two groups, those present primarily in coarse particle and those in fine particle. Fe, Al, Mn, V, and Cr belong to the former group while the rest to the latter. Most metal concentration were highest in spring or winter, and lowest in autumn. Statistical analysis showed strong correlations between Al and Fe, Pb and Zn, and Cu and Mn.

  • PDF

Geochemistry of the Moisan Epithermal Gold-silver Deposit in Haenam Area (해남 모이산 천열수 금은광상의 지구화학적 특성)

  • Moon, Dong-Hyeok;Koh, Sang-Mo;Lee, Gill-Jae
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.491-503
    • /
    • 2010
  • Geochemical characteristics of the Moisan epithermal gold-silver deposit with total 140 samples in Haenam area, Jeollanamdo were studied by using multivariate statistical analysis (correlation analysis, factor analysis and cluster analysis). The correlation analysis reveals that Ag, Cu, Bi, Te are highly correlated with Au in the both non-mineralized and mineralized zone. It is resulted from the presence of Au-Ag bearing minerals (electrum, sylvanite, calaverite and stuezite) and non Au-Ag containing minerals (chalcopyrite, tellurobismuthite and bismuthinite). Mo shows relatively much higher correlation at the mineralized zone (0.615) than non-mineralized zone (0.269) which implies Mo content is strongly affected by Au-mineralization. While Mn, Cs, Fe, Se correlated with Au at the nonmineralized zone, they have negative correlation at the mineralized zone. Therefore, they seem to be eluviated elements from the host rock during gold mineralization. Sb is enriched during the gold mineralization showing high correlation at the mineralized zone and negative correlation at the non-mineralized zone. According to the factor analysis, Se, Ag, Cs, Te are the indicators of gold mineralization presence due to the strong affection of gold content in the non-mineralized zone. In the mineralized zone, on the other hand, Mo, Te and Sb, Cu are the indicators of gold and silver mineralization, respectively. While the cluster analysis reveals that Cd-Zn-Pb-S, Bi-Fe-Cu-Mn, Se-Te-Au-Cs-Ag, As-Sb-Ba are the similar behavior elements groups in the non-mineralized zone, Cd-Zn-Mn-Pb, Fe-S-Se, As-Bi-Cs, Ag-Sb-Cu, Au-Te-Mo are the similar behavior elements groups in the mineralized zone. Using multivariate statistical analysis as mentioned above makes it possible to compare the behavior of presented minerals and difference of geochemical characteristics between mineralized and non-mineralized zone. Therefore, it will be expected a useful tool on the similar type of mining exploration.

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan (괴산 성도 연-아연 광상의 산출광물과 생성환경)

  • Ahn, Seongyeol;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.325-340
    • /
    • 2017
  • The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.

Stainless steel 기판에서 제조된 CIGS 박막 태양전지의 ZnO 확산 방지막을 이용한 deep level defect 감소 연구

  • Kim, Jae-Ung;Kim, Hye-Jin;Kim, Gi-Rim;Kim, Jin-Hyeok;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.393-393
    • /
    • 2016
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. Stainless steel과 같은 철강기판의 경우 Fe, Ni, Cr등의 불순물이 확산되어 흡수층의 특성을 저하시켜 효율을 감소시킨다. 따라서 이러한 철강 기판의 경우 불순물의 확산을 방지하는 확산방지막이 필수적이다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 기존의 두껍고 추가 장비가 요구되는 SiOx나 Al2O3 대신 200nm 이하의 ZnO 박막을 이용하여 확산방지막을 제조하였다. 유연기판으로 STS 430 stainless steel을 이용하였다. 먼저 stainless steel 기판을 이용하여 기판에 의한 흡수층의 특성을 분석하였으며 ZnO 확산 방지막의 유무 및 두께에 따른 흡수층 및 소자의 특성을 분석하였다. 이때 확산 방지막은 기존 TCO 공정에서 사용되는 i-ZnO를 사용하였으며 RF sputter를 이용하여 50~200nm로 두께를 달리하며 특성 비교를 실시하였다. 효율은 확산방지막을 적용하지 않았을 때 약 5.9%에서 확산 방지막 적용시 약 10.7%로 증가하였다. 그 후 기판으로부터 확산되는 불순물의 유입에 의한 결함을 분석하기 위해 DLTS를 이용하여 소자 특성을 분석하였다. 온도는 80~300K으로 가변하며 측정을 실시하였으며 그 후 계산을 통해 activation energy와 capture cross section 값을 구하였다. DLTS 분석 결과 Ni이 CIGS 흡수층으로 확산되어 NiCu anti-site를 형성하여 태양전지의 효율을 감소시키는 것을 확인하였다. 모든 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 제조된 흡수층은 SEM, XRF, XRD, GD-OES, PL, Raman등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.

  • PDF

Study on the soil contamination characteristics according to the functions of the returned U.S. military base (반환미군기지 기능별 토양오염특성에 관한 연구)

  • Oh, Chang-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.481-489
    • /
    • 2013
  • There are U.S. troops with a force about 290,000 strong stationed all around the world, approximately 150 countries. Among the troops, USFK has performed principal part with its stationing for 50 years against the military threat of North Korea. However, as a result of an investigation made into environmental contamination of several bases which were restituted from US to ROK by the Land Partnership Plan in the process of relocation of USFK, it was found that the area was contaminated by not only TPH and BTEX caused by diesel fuel and JP-8 but also various heavy metal over the standard level according to the operations of corps. Among these bases, 4 corps, each of which has different duties and function, were chosen to be analyzed for the characteristics and degrees of soil contamination. Fisrt of all, in armored camp the soil was contaminated by TPH and heavy metal (Zn, Ni, Pb) due to the repairing activities of tracked vehicles and shooting exercises. In army aviation camp, the soil was contaminated by TPH, BTEX and heavy metal (Zn, Cd) due to repairing activities of aircrafts. Also, in engineer camp there was contaminated area polluted by TPH and heavy metal (Zn, Pb) caused by open-air storage of various construction materials and TPH, BTEX and heavy metal (Zn, Pb, Cu) contamination of aircraft shooting area in shooting range camp were detected. Managing environment will be more effective when we identify the contaminative characteristics and take necessary measures in advance.