• 제목/요약/키워드: Cavitation flow

검색결과 543건 처리시간 0.022초

NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석 (Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section)

  • 박일룡;김제인;설한신;김기섭;안종우
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC

  • Shin, Hyun-Joon;Lee, Jong-Seung;Lee, Kang-Hoon;Han, Myung-Ryun;Hur, Eui-Beom;Shin, Sung-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.414-430
    • /
    • 2013
  • This paper shows the study of preswirl duct as an effective energy saving devices that have been devised and reviewed to support the propeller performance, especially for the ship of VLCC with large block coefficients. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The 2 kinds of pre-swirl duct, Unconventional half circular duct and Conventional circular pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction. The optimum self propulsion tests with various angle configurations were carried out and the best configuration was decided. Accordingly, cavitation test was carried out with best configuration of unconventional half circular duct. The blade surface and tip vortex cavitation behaved smoother when the duct was mounted. The hull pressure amplitudes reflected this difference, so the hull pressure amplitude with duct was smaller than that of without duct.

Taxus chinensis로부터 파클리탁셀 정제를 위한 개선된 아세톤-물 분별침전 공정 개발 및 그 동역학 및 열역학적 해석 (Development of An Improved Acetone-Water Fractional Precipitation Process for Purification of Paclitaxel from Taxus chinensis and Its Kinetic and Thermodynamic Analysis)

  • 강회종;김진현
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.379-392
    • /
    • 2021
  • 본 연구에서는 초음파 캐비태이션 버블와 가스 버블를 이용한 파클리탁셀의 개선된 아세톤-물 분별침전 공정을 개발하였다. 전통적 방법에 비해 침전에 소요되는 시간이 20~25배 단축되었다. 또한 파클리탁셀의 침전물 크기는 3.5~5.5배 감소하였으며 파클리탁셀의 확산 계수는 3.5~6.7배 증가하였다. 초음파 캐비태이션 버블을 이용한 침전의 경우 초음파 파워는 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 가스 버블을 이용한 침전의 경우 가스 유량은 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 열역학적 해석을 통해 개선된 분별침전은 비자발적 발열 공정이었다.

오리피스 내부유동에 따른 like-doublet 인젝터의 분열 특성 (The Effects of Orifice Internal Flow on the Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors)

  • 정기훈;길태옥;윤영빈
    • 한국분무공학회지
    • /
    • 제7권4호
    • /
    • pp.32-41
    • /
    • 2002
  • The breakup characteristics of liquid sheets formed by like-doublet injector were investigated in the cold-flow and atmospheric ambient pressure condition. The sheet breakup wavelength, which induces the sheet to be broken into ligaments, as well as the sheet breakup length, which is important for the flame location, was measured using a stroboscopic light. The liquid ligaments are formed intermittently after the breakup of sheet, and the wavelength of ligaments has been believed to have a relation to the combustion instability of liquid rocket engine. Therefore, the wavelength of ligaments and the breakup length of ligaments into fine drops were also measured. Since these spray characteristics are affected by the flow characteristics of two liquid jets before they impinge on each other, we focused on the effects of orifice internal flow such as the cavitation phenomenon that occurs inside the sharp-edged orifice. From the experimental results, we found that the liquid jet turbulence delays the sheet breakup and makes shorter wavelengths for both sheets and ligaments. Since the turbulent strength of sharp-edged orifice is stronger than that of round-edged orifice, the shape of orifice entrance results in large differences in the spray characteristics. Using these results, we proposed empirical models on the spray characteristics of the like-doublet injector, and these models are believed to provide some useful and actual data for designing liquid rocket combustors.

  • PDF

캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델 (GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW)

  • 신병록
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • 제8권4호
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

Drag reduction of a rapid vehicle in supercavitating flow

  • Yang, D.;Xiong, Y.L.;Guo, X.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.35-44
    • /
    • 2017
  • Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV) is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE) turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

보일러 급수펌프용 1500lb 고차압 제어밸브 유량시험 및 수치해석에 관한 연구 (A Study on the Flow Coefficient Test and Numerical Analysis about 1500lb High-Pressure Drop Control Valve for Boiler Feedwater Pump)

  • 이권일;장훈;이치우
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.541-547
    • /
    • 2022
  • Before making a prototype, we predicted the inlet/outlet differential pressure and flow coefficient, which are the most basic design data for the valve through the design and numerical analysis of the trim, which is the most important in the localization development of the 1500Ib high differential pressure control valve used for boiler feed water. As a result, the design value and the analysis value were found to be about 98% similar. The flow field within the fluid velocity of 23m/s to prevent cavitation was also found. The result of the numerical analysis on thermal stress due to the characteristics of valves exposed to high temperatures showed that it was found to be about 18% less than the allowable stress of the bolt fixing the trim. When all loads such as pressure, self-weight, and vibration are applied, however, it is judged to go beyond the currently calculated thermal stress, exceeding the allowable stress.

바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안 (A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel)

  • 서현규
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

점성의 영향을 고려한 선박 추진기용 익형의 단면 형상에 관한 연구 (A study on the hydrofoil section shapes in consideration of viscous effects for marine propeller blades)

  • 김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.46-56
    • /
    • 1988
  • The author has presented a new approach to design hydrofoil section shapes in consideration of viscous for marine propeller blades. In suction sides of propeller blades, the pressure distribution on hydrofoil sections in non-cavitating flow should be examined before the study of cavitation characteristics. Generally, the calculation results for hydrofoil conformal mapping method by which neglect viscous effects do not agree with experimental ones. Moreover, another papers reported that laminar separation bubble and transition played an important role on the cavitation inception. From these considerations, it is very important to study the viscous effects of the hydrofoil sections, especially the mechanism separation bubble and the apparent thickness of hydrofoil section. Therefore, the new design method of hydrofoil sections in consideration of viscous effects in comparison to the airfoil section should be studied. In designing the new hydrofoil section shapes, based on Eppler theory, the author tried to give the peak negative pressure in leading edge region for NACA airfoil in consideration of viscous effects without turbulent boundary layer separation as much as possible. The design method was verified from the fact that the boundary characteristics was improved and the lifts of new hydrofoils were slightly in creased in comparison to these of NACA 16-012 symmetrical, NACA 4412 non-symmetrical airfoils.

  • PDF