• 제목/요약/키워드: Cathepsin

검색결과 196건 처리시간 0.027초

DNA Vaccines Encoding Toxoplasma gondii Cathepsin C 1 Induce Protection against Toxoplasmosis in Mice

  • Han, Yali;Zhou, Aihua;Lu, Gang;Zhao, Guanghui;Sha, Wenchao;Wang, Lin;Guo, Jingjing;Zhou, Jian;Zhou, Huaiyu;Cong, Hua;He, Shenyi
    • Parasites, Hosts and Diseases
    • /
    • 제55권5호
    • /
    • pp.505-512
    • /
    • 2017
  • Toxoplasma gondii cathepsin C proteases (TgCPC1, 2, and 3) are important for the growth and survival of T. gondii. In the present study, B-cell and T-cell epitopes of TgCPC1 were predicted using DNAstar and the Immune Epitope Database. A TgCPC1 DNA vaccine was constructed, and its ability to induce protective immune responses against toxoplasmosis in BALB/c mice was evaluated in the presence or absence of the adjuvant ${\alpha}-GalCer$. As results, TgCPC1 DNA vaccine with or without adjuvant ${\alpha}-GalCer$ showed higher levels of IgG and IgG2a in the serum, as well as IL-2 and $IFN-{\gamma}$ in the spleen compared to controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). Upon challenge infection with tachyzoites of T. gondii (RH), $pCPC1/{\alpha}-GalCer$ immunized mice showed the longest survival among all the groups. Mice vaccinated with DNA vaccine without adjuvant (pCPC1) showed better protective immunity compared to other controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). These results indicate that a DNA vaccine encoding TgCPC1 is a potential vaccine candidate against toxoplasmosis.

Effect of the Calpain System on Volatile Flavor Compounds in the Beef Longissimus lumborum Muscle

  • Yang, Jieun;Dashdorj, Dashmaa;Hwang, Inho
    • 한국축산식품학회지
    • /
    • 제38권3호
    • /
    • pp.515-529
    • /
    • 2018
  • The present study was designed to investigate the effects of calpain system on the formation of volatile flavor compounds in Hanwoo beef. In the first experiment (exp.1), Longissimus lumborum (LL) muscle samples were injected with solutions containing 50 mM $CaCl_2$ or 50 mM $ZnCl_2$ and 154 mM NaCl respectively, and aged for 7 d at $4^{\circ}C$. In the second experiment (exp.2), the ground LL muscle was incubated with the aforementioned solutions containing cathepsin inhibitor. The injection with $CaCl_2$ solution greatly elevated the calpain activity and concomitantly, significantly decreased the Warner-Bratzler shear force (p<0.05). The pH, meat color and cooking loss did not differ (p>0.05) between the treatment groups. A total of 51 volatile compounds were identified using the solid phase microextraction with gas chromatography (SPME-GC). Results on volatile analyses from the both experiments showed that the injection with calcium ions led to significant increase (p<0.05) concentrations of pyrazines and sulfuric compounds. These results coincide with a higher rate of protein degradation due to the $CaCl_2$ injection as compared to the control group. Significantly (p<0.05) higher levels of lipid oxidation derived-aldehydes were found in the samples with $ZnCl_2$. The exp.1 showed that cathepsin inhibitors had no effect on the formation of volatile flavor components after 7 d of aging. These results imply that the proteolytic activity of the calpain system is associated with generation of volatile compounds of chiller-aged beef, while the role of cathepsins is likely very limited.

Genetic aberrations on the short arm of chromosome 8 (8p) in tongue carcinomas

  • Murano, Akiyuki;Ono, Kanae;Koike, Hirofumi;Endo, Yosuke;Shimada, Ken;Kawasaki, Kenshi;Nomura, Hitomi;Shiiba, Masashi;Uzawa, Katsuhiro;Tanzawa, Hideki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제38권2호
    • /
    • pp.121-126
    • /
    • 2012
  • Aberrations on the short arm of chromosome 8 (8p) are frequently observed in several human cancers. In this study, 20 squamous cell carcinoma (SCC) specimens from the tongue were examined in order to evaluate the role of 8p in SCC of the tongue. Microsatellite analysis using 14 markers demonstrated two commonly deleted regions (CDRs) on 8p. Reverse transcription-polymerase chain reaction (RT-PCR) revealed frequent down-regulation of the FEZ1 gene, mapped to 8p22, and frequent over-expression of the cathepsin B gene, mapped to 8p-21-22. These results suggested that genetic aberrations are involved in the development of SCC of the tongue. However, no significant relationship was observed to be established between the genetic alterations and clinicopathological features. Thus, further investigation is necessary in order to clarify the clinical role of 8p in carcinoma of the tongue.

PPARα-Target Gene Expression Requires TIS21/BTG2 Gene in Liver of the C57BL/6 Mice under Fasting Condition

  • Hong, Allen Eugene;Ryu, Min Sook;Kim, Seung Jun;Hwang, Seung Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.140-149
    • /
    • 2018
  • The $TIS21^{/BTG2/PC3}$ gene belongs to the antiproliferative gene (APRO) family and exhibits tumor suppressive activity. However, here we report that TIS21 controls lipid metabolism, rather than cell proliferation, under fasting condition. Using microarray analysis, whole gene expression changes were investigated in liver of TIS21 knockout (TIS21-KO) mice after 20 h fasting and compared with wild type (WT). Peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) target gene expression was almost absent in contrast to increased lipid synthesis in the TIS21-KO mice compared to WT mice. Immunohistochemistry with hematoxylin and eosin staining revealed that lipid deposition was focal in the TIS21-KO liver as opposed to the diffuse and homogeneous pattern in the WT liver after 24 h starvation. In addition, cathepsin E expression was over 10 times higher in the TIS21-KO liver than that in the WT, as opposed to the significant reduction of thioltransferase in both adult and fetal livers. At present, we cannot account for the role of cathepsin E. However, downregulation of glutaredoxin 2 thioltransferase expression might affect hypoxic damage in the TIS21-KO liver. We suggest that the $TIS21^{/BTG2}$ gene might be essential to maintain energy metabolism and reducing power in the liver under fasting condition.

Characterization of the v-cath Gene of Bombyx mori Nuclear Polyhedrosis Virus K1

  • Lee, Kwang Sik;Li, Jianhong;Je, Yeon Ho;Woo, Soo Dong;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.217-223
    • /
    • 2004
  • A cathepsin L-like cysteine protease, v-cath, encoded by the baculovirus has been shown to playa role in host liquefaction. We have identified a v-cath gene in the silkworm virus, Bombyx mori nuclear polyhedrosis virus (BmNPV) K1 strain. The 969 bp v-cath has an open reading frame of 323 amino acids. A putative cleavage site and catalytic sites were conserved in BmNPV-K1 v-cath. The predicted three-dimensional structure of BmNPV-K1 v-cath revealed that the overall fold of BmNPV-K1 v-cath is similar to that of other proteases of the papain family. The deduced amino acid sequence of BmNPV-K1 v-cath showed 98% and 97% protein sequence identity to BmNPV T3 strain and to Autographa californica nuclear polyhedrosis virus, respectively. The BmNPV-K1 v-cath differed at 4 amino acid positions from BmNPV T3. The v-cath gene in BmNPV-K1 genome is located on the EcoRV 6 kb and XhoI 9 kb fragments. Northern hybridization analysis of BmNPV K1 v-cath gene revealed that it is expressed late in infection.

귀비탕(歸脾湯)이 파골세포 분화와 조골세포 활성에 미치는 영향 (The Effect of Guibi-tang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation)

  • 최경희;유동열
    • 대한한방부인과학회지
    • /
    • 제27권3호
    • /
    • pp.12-27
    • /
    • 2014
  • Objectives: This study was performed to evaluate the effect of Guibi-tang water extract (GB) on osteoporosis. Methods: We examined the effect of GB on osteoclast differentiation using murine pre-osteoclastic RAW 264.7 cells treated with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect of GB on osteoclast was measured by counting TRAP (+) multinucleated cells and measuring TRAP activity. The mRNA expressions of osteoclastogenesis-related genes (Cathepsin K, MMP-9, TRAP, NFATc1, MITF, TNF-${\alpha}$, IL-6, COX-2) were measured by real-time PCR. We examined the effect of GB on osteoblast proliferation, ALP activity, bone matrix protein synthesis and collagen synthesis using murine calvarial cell. Results: GB decreased the number of TRAP (+) multinucleated cells and inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. GB decreased the expression of genes related osteoclastogenesis such as Cathepsin K, MMP-9, TRAP, NFATc1, MITF, COX-2 in RANKL-stimulated RAW 264.7 cell. But GB did not decrease the expression of iNOS and increased the expression of TNF-${\alpha}$, IL-6 in RANKL-stimulated RAW 264.7 cell. These genes (iNOS, TNF-${\alpha}$, IL-6) are thought to be related with the inflammatory bone destruction. GB increased cell proliferation of rat calvarial cell and also increased ALP activity in rat calvarial cell. GB did not increase bone matrix protein synthesis but increased collagen synthesis in rat calvarial cell. Conclusions: This study suggests that GB may be effective in treating osteoporosis by inhibiting osteoclast differentiation and its related gene expression and by increasing osteoblast proliferation.

녹제초 추출물이 파골세포 분화 및 골 흡수에 미치는 영향 (Effects of Pyrola japonica Extracts on Osteoclast Differentiation and Bone Resorption)

  • 박정식;임형호
    • 한방재활의학과학회지
    • /
    • 제29권2호
    • /
    • pp.135-147
    • /
    • 2019
  • Objectives This study was performed to evaluate the effect of Pyrola japonica extract (NJ) and its principal constituent, homoarbutin (HA) on osteoclast differentiation and gene expression and bone resorption. The osteoclastogenesis and gene expression were determined in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated RAW264.7 cell. Methods In order to evaluate the effect of HA extracted from NJ on bone resorption, osteoclasts were used to be differentiated and formed by stimulating RAW264.7 cells with RANKL. Tartarate-resistant acid phosphatase (TRAP) (+) polynuclear osteoclast formation ability was evaluated, and differentiation control genes including cathepsin K, matrix metalloproteinases-9 (MMP-9), and TRAP in osteoclast differentiation were analyzed by real-time polymerase chain reaction (PCR). Immunoblotting was performed to measure the effect of mitogen-activated protein kinase (MAPK) factors on bone resorption, and the effect of osteoclasts on osteoclast differentiation was measured. Results Both NJ and high concentration of HA blocked RANKL-stimulated differentiation from RAW264.7 cell to TRAP-positive multinucleated cells. NJ reduced RANKL-induced expression of TRAP, cathepsin K. Both NJ and high concentration of HA inhibited RANKL-mediated expression of MMP-9, nuclear factor of activated T-cells, cytoplasmic 1, and cellular Jun-fos. NJ suppressed RANKL-stimulated expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor-alpha, and levels of interleukins. Both NJ and HA decreased bone resorption in osteoclast-induced bone pit formation model. Conclusions These results suggest that NJ and HA blocked bone resorption by decreasing RANKL-mediated osteoclastogenesis through down-regulation of genes for osteoclast differentiation.

Human umbilical cord blood plasma alleviates age-related olfactory dysfunction by attenuating peripheral TNF-α expression

  • Lee, Byung-Chul;Kang, Insung;Lee, Seung-Eun;Lee, Jin Young;Shin, Nari;Kim, Jae-Jun;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.259-264
    • /
    • 2019
  • Social requirements are needed for living in an aging society and individual longevity. Among them, improved health and medical cares, appropriate for an aging society are strongly demanded. Human cord blood-derived plasma (hUCP) has recently emerged for its unique anti-aging effects. In this study, we investigated brain rejuvenation, particularly olfactory function, that could be achieved by a systemic administration of young blood and its underlying mechanisms. Older than 24-month-old mice were used as an aged group and administered with intravenous injection of hUCP repetitively, eight times. Anti-aging effect of hUCP on olfactory function was evaluated by buried food finding test. To investigate the mode of action of hUCP, brain, serum and spleen of mice were collected for further ex vivo analyses. Systemic injection of hUCP improved aging-associated olfactory deficits, reducing time for finding food. In the brain, although an infiltration of activated microglia and its expression of cathepsin S remarkably decreased, significant changes of proinflammatory factors were not detected. Conversely, peripheral immune balance distinctly switched from predominance of Type 1 helper T (Th1) cells to alternative regulatory T cells (Tregs). These findings indicate that systemic administration of hUCP attenuates age-related neuroinflammation and subsequent olfactory dysfunction by modulating peripheral immune balance toward Treg cells, suggesting another therapeutic function and mechanism of hUCP administration.

계혈등 에탄올 추출물의 RANKL 처리 RAW264.7 세포의 분화와 염증성 골 손실에 미치는 영향 (Effect of Spatholobus Suberectus Extract (SSE) on RANKL-treated RAW264.7 and LPS-induced Bone Loss)

  • 이대중;황종현;박도휘;강기성;전찬용;황귀서
    • 대한한방내과학회지
    • /
    • 제43권6호
    • /
    • pp.1134-1148
    • /
    • 2022
  • Purpose: We evaluated whether Spatholobus suberectus extract (SSE) can be used as a means of preventing and treating osteoporosis by measuring its effect on osteoclast differentiation, gene expression, and bone resorption. Methods: SSE was used to examine the effect on RAW 264.7 cells stimulated with RANKL to induce bone resorption. The inhibitory effect of TRAP formation and the expression of the bone resorption factors TRAP, cathepsin K, and MMP-9 during differentiation were measured. The effects on the differentiation-related factors NFATc and TRAIL and on the expression of OC-STAMP, DC-STAMP, ATP6v0d2, MITF, c-Fos, and inflammation-related factors were also evaluated. The effect on bone resorption was evaluated by culturing RANKL-treated osteoclasts on artificial bone fragments and observing the resulting resorption traces. The effect on bone damage in experimental animals was also measured. Results: SSE inhibited the differentiation of RANKL-stimulated osteoclasts into osteoclasts and suppressed the expression of cathepsin K, TRAP, MMP-9, NFATc1, TRAIL, MITF, OC-STAMP, DC-STAMP, ATP6v0d2, and c-Fos genes. Bone pore formation due to osteoclast action was also inhibited, and LPS-induced bone loss was suppressed in animal experiments. Conclusions: SSE could be useful for the prevention or treatment of osteoporosis by inhibiting osteoclast differentiation and bone resorption and suppressing bone loss induced in experimental animals. However, studies of larger populations are required.

A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19

  • Robertson G. Rivera;Patrick Junard S. Regidor;Edwin C. Ruamero Jr;Eric John V. Allanigue;Melanie V. Salinas
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.4.1-4.18
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.