DOI QR코드

DOI QR Code

Effect of Spatholobus Suberectus Extract (SSE) on RANKL-treated RAW264.7 and LPS-induced Bone Loss

계혈등 에탄올 추출물의 RANKL 처리 RAW264.7 세포의 분화와 염증성 골 손실에 미치는 영향

  • Dae Joong, Lee (Dept. of Preventive Medicine, Gachon University College of Korean Medicine) ;
  • Jong Hyun, Hwang (Dept. of Preventive Medicine, Gachon University College of Korean Medicine) ;
  • Do Hwi, Park (Dept. of Preventive Medicine, Gachon University College of Korean Medicine) ;
  • Ki Sung, Kang (Dept. of Preventive Medicine, Gachon University College of Korean Medicine) ;
  • Chan Yong, Jeon (Dept. of Internal Medicine, Gachon University College of Korean Medicine) ;
  • Gwi Seo, Hwang (Dept. of Preventive Medicine, Gachon University College of Korean Medicine)
  • 이대중 (가천대학교 한의과대학 예방의학교실) ;
  • 황종현 (가천대학교 한의과대학 예방의학교실) ;
  • 박도휘 (가천대학교 한의과대학 예방의학교실) ;
  • 강기성 (가천대학교 한의과대학 예방의학교실) ;
  • 전찬용 (가천대학교 한의과대학 내과학교실) ;
  • 황귀서 (가천대학교 한의과대학 예방의학교실)
  • Received : 2022.09.29
  • Accepted : 2022.12.28
  • Published : 2022.12.30

Abstract

Purpose: We evaluated whether Spatholobus suberectus extract (SSE) can be used as a means of preventing and treating osteoporosis by measuring its effect on osteoclast differentiation, gene expression, and bone resorption. Methods: SSE was used to examine the effect on RAW 264.7 cells stimulated with RANKL to induce bone resorption. The inhibitory effect of TRAP formation and the expression of the bone resorption factors TRAP, cathepsin K, and MMP-9 during differentiation were measured. The effects on the differentiation-related factors NFATc and TRAIL and on the expression of OC-STAMP, DC-STAMP, ATP6v0d2, MITF, c-Fos, and inflammation-related factors were also evaluated. The effect on bone resorption was evaluated by culturing RANKL-treated osteoclasts on artificial bone fragments and observing the resulting resorption traces. The effect on bone damage in experimental animals was also measured. Results: SSE inhibited the differentiation of RANKL-stimulated osteoclasts into osteoclasts and suppressed the expression of cathepsin K, TRAP, MMP-9, NFATc1, TRAIL, MITF, OC-STAMP, DC-STAMP, ATP6v0d2, and c-Fos genes. Bone pore formation due to osteoclast action was also inhibited, and LPS-induced bone loss was suppressed in animal experiments. Conclusions: SSE could be useful for the prevention or treatment of osteoporosis by inhibiting osteoclast differentiation and bone resorption and suppressing bone loss induced in experimental animals. However, studies of larger populations are required.

Keywords

References

  1. OECD Health Statistics 2019, OECD 
  2. 통계청, 생명표, 국가승인통계 제101035호, 2020. 
  3. Jung YH. The Life Expectancy and Health-Adjusted Life Expectancy of Koreans. 보건복지포럼 2012;(11):5-18. 
  4. Lee YH, Kim W, Nam JY. Socioeconomic Burden of Disease Due to Osteoporosis in South Korea. 경기연구원 기본연구 2019:1-84. 
  5. Gass M, Dawson-Hughes B. Preventing osteoporosis-related fractures: an overview. Am J Med 2006;119(4 Suppl 1):S3-11.  https://doi.org/10.1016/j.amjmed.2005.12.017
  6. Lin JT, Lane JM. Osteoporosis: a review. Clinical Orthopaedics and Related Research 2004;425:126-34.  https://doi.org/10.1097/01.blo.0000132404.30139.f2
  7. Sweet MG, Sweet JM, JereMiah MP, Galazka SS. Diagnosis and Treatment of Osteoporosis. Am Family Physician 2009;79(3):193-200. 
  8. Lim YW, Sun DH, Kim YS. Review Articles : Osteoporosis: Pathogenesis and Fracture Prevention. Hip and Pelvis 2009;21(1):6-16. 
  9. Cho SB, Lee SR, Koh KJ. Effects of irradiation on the mRNA expression of the osteocalcin and osteopontin in MC3T3-E1 osteoblastic cell. Korean J oral Maxillofac Radiol 2003;33(3):179-85. 
  10. Song GC, Hwuang GS. Effects of Houyttnia cordata on Bone Marrow Stromal Cell and Osteoporetic Rat. Journal of Oriental Medicine Preventive 2009;13(2):103-13. 
  11. Lee SY, Seo BI, Park JH, Noh SS, Kim DJ. Effect of Ligustri Lucidi Fructus Extract and Vici Herba Extract on Treatment of Osteoporosis in Ovariectomized Rat. Korea Institute of Oriental Medicine 2011;17(1):153-65. 
  12. Pang J, Guo JP, Jin M, Chen ZQ, Wang XW, Li JW. Antiviral effects of aqueous extract from Spatholobus suberectus Dunn. against coxsackievirus B3 in mice. Chinese journal of integrative medicine 2011;17(10):764-9.  https://doi.org/10.1007/s11655-011-0642-1
  13. Lee EH, Noh M, Cha BC. Antioxidant activity of Spatholobus suberectus Dunn. Korean Journal of Pharmacognosy 2005;36(1):50-5. 
  14. Peng F, Zhu H, Meng CW, Ren YR, Dai O, Xiong L. New isoflavanes from Spatholobus suberectus and their cytotoxicity against human breast cancer cell lines. Molecules 2019;24(18):3218. 
  15. Park WM, Choi HS, Kim SM, Woo CH. The Hepatoprotective Activity of Spatholobi Caulis Water Extract against Cadmium-Induced Toxicity in Rats. Journal of Korean Medicine 2010;31(5):90-102. 
  16. Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 2008;41(3):218-23.  https://doi.org/10.1080/08916930701694667
  17. Kim JH, Kim N. Signaling pathways in osteoclast differentiation. Chonnam medical journal 2016;52(1):12-7.  https://doi.org/10.4068/cmj.2016.52.1.12
  18. Yen ML, Tsai HF, Wu YY, Hwa HL, Lee BH, Hsu PN. TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation from monocyte/macrophage lineage precursor cells. Molecular immunology 2008;45(8):2205-13.  https://doi.org/10.1016/j.molimm.2007.12.003
  19. Sambandam Y, Baird KL, Stroebel M, Kowal E, Balasubramanian S, Reddy SV. Microgravity induction of TRAIL expression in preosteoclast cells enhances osteoclast differentiation. Scientific reports 2016;6(1):1-11.  https://doi.org/10.1038/s41598-016-0001-8
  20. Yang M, Birnbaum MJ, MacKay CA, Mason-Savas A, Thompson B, Odgren PR. Osteoclast stimulatory transmembrane protein(OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. Journal of cellular physiology 2008;215(2):497-505.  https://doi.org/10.1002/jcp.21331
  21. Chiu YH, Ritchlin CT. DC-STAMP: a key regulator in osteoclast differentiation. Journal of cellular physiology 2016;231(11):2402-7.  https://doi.org/10.1002/jcp.25389
  22. Wu H, Xu G, Li YP. Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. Journal of Bone and Mineral Research 2009;24(5):871-85.  https://doi.org/10.1359/jbmr.081239
  23. Lu SY, Li M, Lin YL. Mitf induction by RANKL is critical for osteoclastogenesis. Molecular biology of the cell 2010;21(10):1763-71.  https://doi.org/10.1091/mbc.E09-07-0584
  24. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of biochemistry and biophysics 2008;473(2):139-46.  https://doi.org/10.1016/j.abb.2008.03.018
  25. Collin-Osdoby P, Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol 2012;816:187-202.  https://doi.org/10.1007/978-1-61779-415-5_13
  26. Hou GQ, Guo C, Song GH, Fang N, Fan WJ, Chen XD, et al. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264. 7 cells. International journal of molecular medicine 2013;32(2):503-10.  https://doi.org/10.3892/ijmm.2013.1406
  27. 보건복지부. 건강행태 및 만성질환 통계. 2012. 
  28. Kim YM, Kim JH, Cho DS. Gender Difference in Osteoporosis Prevalence, Awareness and Treatment: Based on the Korea National Health and Nutrition Examination Survey 2008~2011. Journal of Korean Academy of Nursing 2015;45(2):293-305.  https://doi.org/10.4040/jkan.2015.45.2.293
  29. Park YD, Kim YR, Kim DY, Jung YS, Lee JG, Kim YG, et al. Awareness of Korean Dentists on Bisphospohnate related osteonecrosis of the jaws : Preliminary report. Journal of the Korean Association of Oral and Maxillofacial Surgeons 2009;35(3):153-7. 
  30. Chae BN, Hong YG, Lee SG, Jung YS, Lee GW, Kim HM. Cyclic Pamidronate Infusion in Primary Osteoporotic Women. Endocrinology and metabolism 2001;16(2):221-30. 
  31. Liu XY, Zhang YB, Yang XW, Yang YF, Xu W, Zhao W, et al. Anti-inflammatory activity of some characteristic constituents from the vine stems of Spatholobus suberectus. Molecules 2019;24(20):3750. 
  32. Chen SR, Wang AQ, Lin LG, Qiu HC, Wang YT, Wang Y. In vitro study on anti-hepatitis C virus activity of Spatholobus suberectus Dunn. Molecules 2016;21(10):1367. 
  33. Liu D, Wang Q, Wei Z, Liu X, Zheng X, Qian K, et al. Network Pharmacology Study on the Mechanism of Couplet Medicine of Tripterygium hypoglaucum-Spatholobus suberectus in the Treatment of Rheumatoid Arthritis. China Pharmacy 2019:2639-44. 
  34. Darnay BG, Besse A, Poblenz AT, Lamothe B, Jacoby JJ. TRAFs in RANK signaling. Adv Exp Med Biol 2007;597:152-9.  https://doi.org/10.1007/978-0-387-70630-6_12
  35. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. The Journal of experimental medicine 2000;191(2):275-86.  https://doi.org/10.1084/jem.191.2.275
  36. Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Experimental cell research 2007;313(1):168-78.  https://doi.org/10.1016/j.yexcr.2006.10.001
  37. Goto T, Yamaza T, Tanaka T. Cathepsins in the osteoclast. Microscopy 2003;52(6):551-8. 
  38. Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. Journal of bone metabolism 2014;21(4):233-41.  https://doi.org/10.11005/jbm.2014.21.4.233
  39. Huang H, Ryu J, Ha J, Chang EJ, Kim HJ, Kim HM, et al. Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-κB transactivation by RANKL. Cell Death & Differentiation 2006;13(11):1879-91.  https://doi.org/10.1038/sj.cdd.4401882
  40. Yang M, Birnbaum MJ, MacKay CA, Mason-Savas A, Thompson B, Odgren PR. Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. Journal of cellular physiology 2008;215(2):497-505.  https://doi.org/10.1002/jcp.21331
  41. Chiu YH, Ritchlin CT. DC-STAMP: a key regulator in osteoclast differentiation. Journal of cellular physiology 2016;231(11):2402-7.  https://doi.org/10.1002/jcp.25389
  42. Ren-Neng TANG, Xiao-Bo QU, Shu-Hong GUAN, Ping-Ping XU, Yang-Yang SHI, De-An GUO. Chemical constituents of Spatholobus suberectus. Chinese journal of natural medicines 2012;10(1):32-5.  https://doi.org/10.3724/SP.J.1009.2012.00032
  43. Lee MH, Lin YP, Hsu FL, Zhan GR, Yen KY. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry 2006;67(12):1262-70.  https://doi.org/10.1016/j.phytochem.2006.05.008
  44. Shim SH. 20S proteasome inhibitory activity of flavonoids isolated from Spatholobus suberectus. Phytotherapy Research 2011;25(4):615-8.  https://doi.org/10.1002/ptr.3342
  45. Cui YJ, Liu P, Chen RY. Studies on the chemical constituents of Spatholobus suberectus Dunn. Yao xue xue bao=Acta Pharmaceutica Sinica 2002;37(10):784-7. 
  46. Fraga CG. Plant polyphenols: how to translate their in vitro antioxidant actions to in vivo conditions. IUBMB life 2007;59(45):308-15.  https://doi.org/10.1080/15216540701230529
  47. Karieb S, Fox SW. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264. 7 cells by suppressing c-fos-induced NFATc1 expression. Journal of cellular biochemistry 2011;112(2):476-87. https://doi.org/10.1002/jcb.22935