• Title/Summary/Keyword: Catecholamine (CA) Secretion

Search Result 73, Processing Time 0.023 seconds

Influence of Apamin on Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Eun-Sook;Park, Hyeon-Gyoon;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.142-151
    • /
    • 2002
  • The present study was attempted to investigate the effect of apamin on catecholamine (CA) secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of apamin (1 nM) into an adrenal vein for 20 min produced greatly potentiation in CA secretion evoked by ACh (5.32 $ imes$ $10^{-3}$ M), high $K^+$, (5.6 $ imes$ $10^{-2}$), DMPP ($10^{-4}$ M for 2 min), McN-A-343 ($10^{-4}$ M for 2 min), cyclopiazonic acid ($10^{-5}$ M for 4 min) and Bay-K-8644 ($10^{-5}$ M for 4 min). However, apamin itself did fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded with apamin (1 nM) under the presence of glibenclamide ($10^{-6}$ M), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretion evoked by DMPP and McN-A-343 was not affected. However, the perfusion of high concentration of apamin (100 nM) into an adrenal vein for 20 min rather inhibited significantly CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644. Taken together, these results suggest that the low concentration of apamin causes greatly the enhancement of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. These findings suggests that apamin-sensitive SK ($Ca^{2+}$) channels located in rat adrenal medullary chromaffin cells may play an inhibitory role in the release of catecholamines mediated by stimulation of cholinergic nicotinic and muscarinic receptors as well as membrane depolarization. However, it is thought that high concentration of apamin cause the inhibitory responses in catecholamine secretion evoked by stimulation of cholinergic receptors as well as by membrane depolarization from the rat adrenal gland without relevance with the SK channel blockade.

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

CONTRIBUTION OF DIFFERENT TYPES OF $Ca^{2+}$ CHANNELS TO CATECHOLAMINE SECRETION IN RAT CHROMAFFIN CELLS

  • Goo, Yong-Sook;Jina Roh;Lee, Jung-Hwa;Cha, Eun-Jong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.42-42
    • /
    • 1996
  • Adrenal chromaffin cells secrete catecholamine in response to acetylcholine. The secretory response has absolute requirement for extracellular calcium, indicating that $Ca^{2+}$ influx through voltage operated $Ca^{2+}$ channels (VOCC) is the primary trigger of the secretion cascade. Although the existence of various types of $Ca^{2+}$ channels has been explore using patch clamp techique in adrenal chromaffin cells, the contribution of different types of $Ca^{2+}$ channels to catecholamine secretion remains to be establised. (omitted)omitted)

  • PDF

Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland (흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Rho, Sang-Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.43-55
    • /
    • 1993
  • The present study was conducted to examine the characteristics of histamine on catecholamine secretion in the isolated perfused rat adrenal gland and to clarify the mechanism of its secretory action. Histamine (37.5 to 150 ug) injected into an adrenal vein evoked a dose-dependent significant secretory response of catecholamines (CA) from the rat adrenal gland. However, upon the repeated injection of histamine (150 ug) at 120 min intervals, CA secretion was rapidly decreased after third injection of histamine. Tachyphylaxis to releasing effects of CA evoked by histamine was observed by the repeated administration. The histamine-induced CA secretion was markedly inhibited by the pretreatment with chlorisondamine, diphenhydramine, ranitidine, $Ca^{++}-free$ Krebs solution, nicardipine and TMB-8 while was not affected by pirenzepine. Moreover, the CA secretion evoked by ACh was considerably reduced by the prior perfusion of histamine $(6.8{\times}10^{-5} M)$ for 30 min. These experimental data suggest that histamine causes secretion of CA in a calcium dependent manner from the perfused rat adrenal gland and that its secretory effect is mediated through activation of both $H_1-$ and $H_2-histaminergic$ receptors located in adrenal medulla, which may be associated with stimulation of cholinergic nicotinic receptors.

  • PDF

INFLUENCE OF 17-$\alpha$-ESTRADIOL ON CATECHOLAMINE SECRETION FROM THE PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Lee, Jong-Jin-;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.297-297
    • /
    • 1994
  • It has been known that adrenal corticosteroids influence the expression of adrenomedullary catecholamine-synthetizing enzymes and also suppress the emission of axonal-like processes in cultured chromaffin cells. In the present study, it was attempted ta investigate the effect of 17${\alpha}$-estradiol on catecholamine(CA) secretion evoked by acetylcholine(ACh), DMPP, McN-A-343, excess K$\^$+/ and Bay-K-8644 from the isolated perfused rat adrenal gland. The perfusion of 17${\alpha}$-estradiol (10$\^$-6/ 10$\^$-4/M) me an adrenal vein for 20min produced relatively dose-dependent inhibition in CA secretion evoked by ACh (5.5 ${\times}$ 10$\^$-3/M), DMPP (10$\^$-4/M for 2min), McN-A-343 (10$\^$-4/M for 4min) and Bay-K-8644 (10$\^$-5/M for 4min), while did not affect the CA secretory effect of high K$\^$+/(5.6 x 10$\^$-2/M). Also, in the presence of 17${\beta}$-estradiol, CA secretion of ACh, DMPP and McN-A-343 without any effect on excess K$\^$+/-evoked CA secretion. However, in adrenal glands preloaded with 17${\alpha}$-estradiol (10$\^$-5/M) plus tamoxifen (10$\^$-5/M), which is known to be a selective antagonist of estrogen receptors (for 20min), CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered as compared to that of 17${\alpha}$-estradiol only, but excess K$\^$+/-induced CA secretion was not affected.

  • PDF

Influence of Strychnine on Catecholamine Release Evoked by Activation of Cholinergic Receptors from the Perfused Rat Adrenal Gland

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Oh, Song-Hoon;Kim, Il-Sik;Lee, Bang-Hun;Cho, Seong-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The present study was attempted to investigate the effect of strychnine on catecholamine (CA) secretion evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland. The perfusion of strychnine $(10^{-4}\;M)$ into an adrenal vein for 20 min produced great inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min)$ and McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ but did not alter CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Strychnine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded simultaneously with strychnine $(10^{-4}\;M)$ and glycine (an agonist of glycinergic receptor, $10^{-4}\;M),$ CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered to some extent when compared with those evoked by treatment with strychnine only. However, CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$ was not affected. Taken together, these results demonstrate that strychnine inhibits greatly the CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does not affect that by membrane depolarization. It is suggested that strychnine-sensitive glycinergic receptors are localized in rat adrenal medullary chromaffin cells.

  • PDF

Influence of Quinidine on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization from the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Jeon, Yong-Joon;Yang, Won-Ho;Lim, Geon-Han;Kim, Il-Hwan;Lee, Seung-Myeong;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The present study was designed to investigate the effect f quinidine on catecholamine (CA) secretion evoked by ACh, high $K^{+}$, DMPP, McN-A343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of quinidine (15-150 $\mu$M) into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretion evoked by ACh (5.32$\times$10$^{-3}$ M), high $K^{+}$ (5.6$\times$10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Furthermore, in adrenal glands pre-loaded with quinine (5$\times$10$^{-5}$ M), CA secretory responses evoked by veratridine (10$^{-4}$ M) was time-dependently inhibited. Also, in the presence of lidocaine (10$^{-4}$ M), which is also known to be a sodium channel blocker, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclo-piazonic acid were also greatly reduced in similar fashion to that of quinidine-treatment. Taken together, these results suggest that quinidine causes greatly the inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings indicate strongly that this inhibitory action of quinidine appears to be associated to the blocking action of sodium channels at least in CA secretion from the rat adrenal gland.and.

  • PDF

Forskolin-Induced Potentiation of Catecholamine Secretion Evoked By Ach, DMPP, McN-A-343 and Excess $K^+$ From the Rat Adrenal Gland (Forskolin의 흰쥐적출관류부신으로 부터 Ach, Excess $K^+$, DMPP, McN-A-343에 의한 Catecholamine 분비효과의 증강작용)

  • Lim, Dong-Yoon;Kim, Won-Shik;Choi, Cheol-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-181
    • /
    • 1991
  • The present study was an attempt to investigate the effect of forskolin on secretion of catecholamines (CA) evoked by Ach, excess $K^+$, DMPP, McN-A-343 and caffeine from the isolated perfused rat adrenal glands and to elucidate its mechanism of action. The perfusion with forskolin (1.0 uM) for 1 min into the adrenal vein enhanced markedly the secreation of CA evoked by Ach (50 ug), excess $K^+$ (56 mM) DMPP (100 uM) and by caffeine (0.3 mM) but did not that by McN-A-343. Forskolin alone did not potentiate the CA secretion. Moreover, forskolin augmented the CA release evoked by the above same stimulation even in the absence of extracellular calcium. The 1 min perfusion of 300 uM-dibutyryl cyclic AMP (DBcAMP), which is known to increase cyclic AMP levels, led to enhancement of Ca secretion evoked by Ach, excess $K^+$ and DMPP but did not that by McN-A-343 and caffeine. DBcAMP by itself also did not augment the CA secretion. In the calcium-free medium DBcAMP significantly enhanced the CA secretion by the same stimulation, except for the case of McN-A-343. These experimental results suggest that forskolin activates adenylate cyclase, resulting the elevation of cyclic AMP which may potentiate cholinergic nicotinic receptor-mediated and also depolarization-dependent CA secretion and that it may alter the intracellular calcium homeostasis in the rat adrenal glands.

  • PDF

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF

Mechanism of Vasoactive Intestinal Polypeptide-Induced Catecholamine Secretion from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Heo, Jae-Bong;Choi, Cheol-Hee;Lim, Geon-Han;Lee, Yong-Gyoon;Oh, Song-Hoon;Kim, Il-Sik;Kim, Jong-In
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.443-454
    • /
    • 1998
  • The present study was attempted to investigate the effect of vasoactive intestinal polypeptide (VIP) on secretion of catecholamines (CA) and to establish whether there is the existence of a noncholinergic mechanism in adrenomedullary CA secretion from the isolated perfused rat adrenal gland. The perfusion into an adrenal vein of VIP $(3{\times}10^{-6}\;M)$ for 5 min or the injection of acetylcholine (ACh, $5.32{\times}10^{-3}\;M$) resulted in great increases in CA secretion. Tachyphylaxis to releasing effect of CA evoked by VIP was not observed by the repeated perfusion. The net increase in adrenal CA secretion evoked by VIP still remained unaffected in the presence of atropine or chlorisondamine. However, the CA release in response to ACh was greatly inhibited by the pretreatment with atropine or chlorisondamine. The releasing effects of CA evoked by either VIP or ACh were depressed by pretreatment with nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free medium. Moreover, VIP- as well as ACh-evoked CA secretory responses were markedly inhibited under the presence of $(Lys^1,\;Pro^{2.5},\;Arg^{3.4},\;Tyr^6)-VIP$ or naloxone. CA secretory responses induced by ACh and high $K^+\;(5.6{\times}10^{-2}\;M)$ were potentiated by infusion of VIP $(3{\times}10^{-6}M\;for\;5\;min)$. Taken together, these experimental results indicate that VIP causes CA release in a fashion of calcium ion -dependence, suggesting strongly that there exists a noncholinergic mechanism that may be involved in the regulation of adrenomedullary CA secretion through VIP receptors in the rat adrenal gland, and that VIP may be the noncholinergic excitatory secretagogue present in the chromaffin cells.

  • PDF