CONTRIBUTION OF DIFFERENT TYPES OF Ca²⁺ CHANNELS TO CATECHOLAMINE SECRETION IN RAT CHROMAFFIN CELLS

Yong Sook Goo, Jina Roh, Jung Hwa Lee, Eun Jong Cha*

Department of Physiology & Biomedical Engineering* College of Medicine, Chungbuk National University Cheongju 360-763, KOREA

Adrenal chromaffin cells secrete catecholamine in response to acetylcholine. The secretory response has absolute requirement for extracellular calcium, indicating that Ca²⁺ influx through voltage operated Ca²⁺ channels(VOCC) is the primary trigger of the secretion cascade. Although the existence of various types of Ca²⁺ channels has been explored using patch clamp techique in adrenal chromaffin cells, the contribution of different types of Ca²⁺ channels to catecholamine secretion remains to be establised.

To investigate the quantitative contribution of different types of Ca^{2^+} channels to catecholamine secretion, Ca^{2^+} current(I_{Ca}) and the resultant membrane capacitance increment(ΔC_m) were simultaneously measured. Software based phasor detector technique was used to monitor ΔC_m . Effects of L, N, and P type Ca^{2^+} channel blockers (nicardipine, ω -conotoxin, and ω -agatoxin, respectively) on $I_{Ca}(43.85\pm6.72~\%$ of control, $56.13\pm6.40~\%$ of control, 91.3~% of control) was also in parallel with the resultant $\Delta C_m(30.10\pm16.44~\%$ of control, $56.66\pm9.49~\%$ of control, 75.2~% of control).

It was concluded that L, N, and also P type Ca^{2^+} channels served as Ca^{2^+} source for exocytosis and no difference was observed in their efficiency to evoke exocytosis among L, N, and P type Ca^{2^+} channels.