• Title/Summary/Keyword: Catalytic Reduction

Search Result 775, Processing Time 0.028 seconds

Coordination Chemical Approach to the Safety of Nitrofuran Drugs I. Reduction of Nitrofurazone Catalyzed by Molybdothiol Complexes (Nitrofuran계 의약품의 안전성에 관한 착물화학적 연구(I) Mo-thiol착물에 의한 Nitrofurazone의 촉매환원)

  • 김종윤;김보길
    • YAKHAK HOEJI
    • /
    • v.21 no.4
    • /
    • pp.184-192
    • /
    • 1977
  • In the presence of dithionite, two kinds of molybdothiol complexes, particularly isolated Mo-cysteine complexes, used as models for xanthine oxidase or aldehyde oxidase exhibited catalytic activity on the reduction of nitrofurazone to its amino derivative. Of the two Mo-cysteine complexes, the activity of oxo-bridged one was apparently greater than that of sulfido-bridged one. The promoting effect was hardly shown by added cofactors or their replacements of the enzymes. The catalyzed reduction is considered to take place by consecutive direct two-electron transfer mechanism from catalytically active reduced form of the molybdothiol complexes to nitrofurazone and the probable intermediates.

  • PDF

Electro-catalytic Performance of PtRu Catalysts Supported on Urea-treated MWNTs for Methanol Oxidation

  • Park, Jeong-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.159-159
    • /
    • 2009
  • In this work, nitrogen and oxygen functionalities was introduced to the graphite nanofibers (GNFs) and their effect on electrocatalytic performance of the GNF supports for direct methanol fuel cells (DMFCs) was invesigated. The nitrogen and oxygen groups were introduced through the urea treatments and acid treatment, respectively. And, PtRu catalysts deposited on modified GNFs were prepared by a chemical reduction method. The catalysts were characterized by means of elemental analysis, nitrogen adsorption, and X-ray photoelectron spetroscopy (XPS). The structure and morphological characteristics of the catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). As a result, the Pt-Ru nanoparticles were impregnated on GNFs with good formation in 3-5 nm. And, the cyclic voltammograms for methanol oxidation revealed that the methanol oxidation peak varied depending on changes of surface functional groups. It was thus considered that the PtRu deposition was related to the reduction of PtRu and surface characteristics of the carbon supports. The changes of surface functional groups were related to PtRu reduction, significantly affect the methanol oxidation activity of anode electrocatalysts in DMFCs.

  • PDF

Abatement Study of TNT Wastes by Porphyrin-Metal Complexes (포피린-메탈 복합체를 이용한 TNT 폐수의 처리)

  • 조정국;우인성
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.127-132
    • /
    • 1993
  • Porphyrin-catalyzed reduction of TNT to triaminotoluene was performed in both batch reactions and a continuous process. Packed-bed reactors were used to study porphyrin-catalyzed reduction in a continuous process. A reactor was packed with DEAD(diethylaminoethyl)-substituted glass beads on which $Co^{+3}$_centered deuteroporpgyrin Ⅸ, -2, 4-disulfonic acid was immobilized, and another containing only DEAE glass beads was used as a control. The porphyrin exhibited catalytic activity in its immobilized state up to 100 hours of operation. Based on the successful abatement of nitrobodies by porphyrin-catalyzed reduction in both batch and continuous process, this process is recommended to be used as a pretreatment for biological treatment or carbon adsorption treatment of TNT wastes.

  • PDF

Effect of Trialkylborane on the Stereochemistry of Ketone Reduction with Lithium Borohydride

  • Nung-Min Yoon;Jin-Soon Cha;Won-Suh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.14-17
    • /
    • 1983
  • The effects of trialkylborane on the stereochemistry of ketone reduction with lithium borohydride were studied for the four representative ketones, namely 4-t-butylcyclohexanone, 2-methylcyclohexanone, norcamphor, and camphor. The presence of trialkylborane increased the yields of the less stable alcohols. For example, in the presence of tri-s-butylborane, 42 % yield of cis-4-t-butylcyclohexanol was observed whereas only 8 % yield with lithium borohydride alone in the reduction of 4-t-butylcyclohexanone. The in situ formation of lithium trialkylborohydride, by the hydride transfer from lithium trialkoxyborohydride to trialkylborane, was demonstrated as a possible mechanism for the catalytic effect of trialkylborane.

Synthesis of Gold Nanoparticles Using Fullerene Oxide and Their Catalytic Activity for Reduction of 4-Nitroaniline

  • Park, Geun Wook;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.105-109
    • /
    • 2019
  • Gold nanoparticles were synthesized by reacting potassium tetrachloroaurate ($KAuCl_4$), potassium carbonate ($K_2CO_3$), and isopropyl alcohol in the presence of fullerene oxide [$C_{60}(O)_n$, $n{\geq}1$], which was, in turn, prepared from [$C_{60}$] fullerene and m-chloroperoxybenzoic acid under refluxing conditions. The crystallinity and morphology of the prepared gold nanoparticles were confirmed by UV-vis spectroscopy, X-ray diffraction, and scanning electron microscopy. The activity of the gold nanoparticles in the reduction of 4-nitroaniline was measured in order to determine its capability as a catalyst.

Synthesis of Co/PANi/CNT for PEMFC Non-precious Metal Catalyst (비백금 연료전지 촉매로서의 Co/PANi/CNT 합성 및 특성)

  • Lee, Hyo June;Ahn, Ji Eun;Kim, Hun-Jong;Han, M.K.;Kim, Hansung;Lee, H.W.
    • Applied Chemistry
    • /
    • v.15 no.1
    • /
    • pp.81-84
    • /
    • 2011
  • Platinum catalyst activity and stability is excellent in terms of fuel cells as a catalyst here. Although it is widely used, to compensate for the high price issue non-precious fuel cell catalysts are being developed. In this study, Co/PANi/CNT composite and non-precious as a catalyst for oxygen reduction was applied. Polyaniline on the interaction between cobalt and the oxygen reduction reaction and the structural characteristics observed in the impact and heat treatment was carried out according to the improved catalytic performance. Potential range is oxygen reduction reaction 0.55 V to 0.78 V(vs. NHE) after pyrolysis. Through this study, Co /PANi/CNT composites as a potential catalyst for fuel cells were non-precious.

Effects of Calcium on the Activity of V2O5/TiO2 Catalysts in SCR Processes (SCR 공정에서 Calcium 성분이 V2O5/TiO2 촉매 활성에 미치는 영향)

  • Kim, Jin-Kil;Park, Kwang-Hee;Hong, Sung-Chang;Lee, Eui-Dong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.772-777
    • /
    • 2012
  • Factors acting on the deactivation of $V_2O_5/TiO_2$ catalysts were investigated in the selective catalytic reduction(SCR) process for long term operation. The activity of $V_2O_5/TiO_2$ catalysts was decreased rapidly after 8 months from the starting of operation in the selective catalytic reaction processes. From ICP-AES analysis, the deactivation of the used catalysts could be caused from the calcium component included in urea solution as a reducing agent. It was found from the $NH_3$-TPD experiments that the strong basic element like Ca component drastically affected the acidity of the $V_2O_5/TiO_2$ catalyst. The results gave an explanation on the reason why the component of Ca, even though its concentration is very low, could lead to the deactivation of $V_2O_5/TiO_2$ catalyst in the selective catalytic reaction processes.

Diesel SCR Development to Meet US Tier2 Bin5 Emission Regulation (북미 Tier2 Bin5 규제 대응을 위한 디젤 SCR 개발)

  • Lee, Kang-Won;Kang, Jung-Whun;Jo, Chung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.98-104
    • /
    • 2011
  • The introduction of a diesel engine into the passenger car and light duty applications in the United States involves significant technical challenges for the automotive makers. This paper describes the SCR System optimization procedure for such a diesel engine application to meet Tier2 Bin5 emission regulation. A urea SCR system, a representative $NO_x$ reduction after-treatment technique, is applied to a 3.0 liter diesel engine. To achieve the maximum $NO_x$ reduction performance, the exhaust system layout was optimized using series of the computational fluid dynamics and the urea distribution uniformity test. Furthermore a comprehensive simulation model for the key factors influencing $NO_x$ reduction performance was developed and embedded in the Simulink/Matlab environment. This model was then applied to the urea SCR system and played a key role to shorten the time needed for SCR control parameter calibration. The potential of a urea SCR system for reducing diesel $NO_x$ emission is shown for FTP75 and US06 emission standard test cycle.

Synthesis of α-oximinoketones, Precursor of CO2 Reduction Macrocyclic Coenzyme F430 Model Complexes

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.139-144
    • /
    • 2017
  • Ni(II) containing coenzyme F430 catalyzes the reduction of $CO_2$ in methanogen. Macrocyclic Ni(II) complexes with N,O shiff bases have been received a great attention since metal ions play an important role in the catalysis of reduction. The reducing power of metal complexes are supposed to be dependent on oxidoreduction state of metal ion and structural properties of macrocyclic ring moiety that can enhance electrochemical properties in catalytic process. Six different ${\alpha}$-oximinoketone compounds, precursor of macrocyclic ligands used in $CO_2$ reduction coenzyme F430 model complexes, were synthesized with yields over 90% and characterized by NMR. The molecular geometries of ${\alpha}$-oximinoketone analogues were fully optimized at Beck's-three-parameter hybrid (B3LYP) method in density functional theory (DFT) method with $6-31+G^*$ basis set using the ab initio program. In order to understand molecular planarity and substitutional effects that may enhance reducing power of metal ion are studied by computing the structure-dependent $^{13}C$-NMR chemical shift and comparing with experimental results.

Synthesis of Nitrogen-doped Carbon Nanofibers for Oxygen Reduction Reaction (산소환원반응 촉매용 질소 도핑된 탄소나노섬유의 제조)

  • An, Geon-Hyoung;Lee, Eun-Hwan;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.420-425
    • /
    • 2016
  • N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential ($E_{1/2}$) of 0.43 V, kinetic limiting current density of $6.2mAcm^{-2}$, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.