• 제목/요약/키워드: Catalytic Activity

검색결과 1,634건 처리시간 0.028초

질소산화물의 촉매반응에 의한 저감기술에 관한 연구 (A Stud on the Catalytic Removal of Nitric Oxide)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Theoretical Analysis and Prediction of Catalysts for Oxidative Decarboxylation of Melanin-Concentrating Hormone

  • Kim, Min-Gyum;Kim, Myoung-Soon;Park, Hwang-Seo;Lee, Sang-Youb;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1151-1155
    • /
    • 2007
  • In a previous study, a catalyst (A) was discovered for oxidative decarboxylation of melanin-concentrating hormone (MCH). To explain the catalytic action and to predict the structure of a new catalyst with improved activity, docking simulations were carried out for the complex formed between A and MCH. The simulations suggested that the three terminal groups of A form a hydrophobic pocket and that van der Waals interactions between the hydrophobic pocket and MCH play a role in stabilizing the MCH-A complex. Consequently, a new catalyst (B) was designed and synthesized in expectation of improved catalytic activity resulting from enhanced van der Waals interactions. The new catalyst, however, showed slightly lower catalytic activity. Lack of the accurate solution structure of MCH may be one of the factors associated with difficulties in prediction of improvement in catalytic activity by purely theoretical means. The results, however, revealed that variation of the acyl portion of the hydroxyproline portion may lead to improved catalysts.

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제51권3호
    • /
    • pp.240-249
    • /
    • 2016
  • $BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.

Synthesis of Palladium Nanocubes/Nanorods and Their Catalytic Activity for Heck Reaction of Iodobenzene

  • Ding, Hao;Dong, Jiling
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.105-109
    • /
    • 2016
  • Palladium has been used as a catalyst not only in Suzuki and Heck cross coupling reaction in organic chemistry, but also in automobile industry for the reduction of vehicle exhausts. The catalytic activity of Pd nanoparticles depends strongly on their size and exposed crystalline facets. In this study, the single crystalline palladium nanocubes/nanorods were prepared in the presence of polyvinyl pyrrolidone (PVP) and potassium bromide (KBr) using the polyol method. Selected area diffraction pattern and high-resolution transmission electron microscopy (TEM) were performed by TEM. The result shows that the ratio of KBr/PVP is the key factor to determine whether the product is cubes or rods. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The catalytic activity of these Pd nanocubes towards heck reaction of iodobenzene with acrylate or acrylic acid was found to be higher than that of Pd nanorods. We suspect it is caused by the difference of energy state while Pd nanocubes is {100} plane and nanorods is {111} plane.

Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives

  • Rathod, Sandip B.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2835-2840
    • /
    • 2010
  • A series of $MoO_3/CeO_2-ZrO_2$ catalysts with different Mo content (8 - 20 wt %) were prepared by simple co-precipitation followed by impregnation method and were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy dispersive spectroscopic (EDS) techniques. The prepared materials were tested for catalytic activity by the synthesis of benzimidazole derivatives using condensation of aromatic aldehydes and o-phenylenediamine by conventional and microwave method. Obtained results reveal that the catalytic activity increases with increase in Mo wt % loading. The best catalytic activity was obtained with 20 wt % $MoO_3/CeO_2-ZrO_2$. The particle size or crystallite size was estimated using Debye-Scherrer equation. After completion of reaction, the catalyst can be recovered efficiently and reused with consistent activity.

Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα

  • Jeon, Kyung-Hwa;Shrestha, Aarajana;Jang, Hae Jin;Kim, Jeong-Ahn;Sheen, Naeun;Seo, Minjung;Lee, Eung-Seok;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.562-570
    • /
    • 2021
  • Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.

Effect of Mutations of Five Conserved Histidine Residues in the Catalytic Subunit of the cbb3 Cytochrome c Oxidase on its Function

  • Oh Jeong-Il
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.284-292
    • /
    • 2006
  • The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H2l4, B233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.

RWGS 반응을 위한 Pt/TiO2 촉매의 조촉매 첨가 영향 연구 (Effect of Promotor Addition to Pt/TiO2 Catalyst on Reverse Water Gas Shift Reaction)

  • 김성수
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.339-344
    • /
    • 2017
  • 다양한 조촉매가 첨가된 $Pt/TiO_2$ 촉매 및 순수 Pt계 촉매의 RWGS 반응에 대한 특성과 성능에 관한 연구를 수행하였다. 지지체 및 활성금속 종류에 의해 RWGS 반응 성능이 크게 영향 받음을 확인하였고, $Pt/TiO_2$ 촉매가 가장 우수한 성능을 보임을 알 수 있었다. $CO_2$ 주입 농도별 실험 및 열역학적 평형 전환율 평가를 통해 $Pt/TiO_2$ 촉매의 성능을 객관적으로 평가할 수 있었고, 상용촉매 대비 우수한 성능을 보임을 관찰하였다. 조촉매로 첨가한 Ca와 Na는 촉매성능을 증진시킬 수 있었으며, XPS 분석을 통해 표면 활성점의 전자밀도가 성능과 밀접한 관련이 있음을 확인하였다.

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응 (Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts)

  • 양원호;김문현
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.