• Title/Summary/Keyword: Catalyst temperature

Search Result 1,812, Processing Time 0.026 seconds

Stabilization of PAN Nanofibers Using Electron Beam Irradiation and Thermal Compression Technique (전자선 조사와 열압축공정을 이용한 PAN 나노섬유의 안정화 및 특성분석)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Polyacrylonitrile (PAN)-based carbon fibers have been widely used due to their unique chemical, electrical, and mechanical properties. Electron beam irradiation has been extensively employed as means of altering properties of polymeric materials. Electron beam irradiation can induce chemical reactions in materials without any catalyst. Electron beam irradiation may be useful in accelerating the thermal compression stabilization of PAN nanofibers. To investigate the irradiation effect on PAN fibers, PAN nanofibers were irradiated by electron beam at 1,000~5,000 kGy. Irradiated and non-irradiated PAN nanofibers were heated at 180 and $220^{\circ}C$ without applying pressure for 15 min. Then 1 metric ton has been applied for 5 min. SEM images have been found that the fiber kept its morphological behavior after the hot pressing up to electron beam irradiated 1,000 kGy. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses and temperature. FT-IR spectra have been found to decrease $C{\equiv}N$ stretch band with increasing the electron beam irradiation dose. These results indicate that the modification of PAN via reactions such as cyclization is significantly enhanced by electron beam irradiation and thermal compression technique.

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Park, Jong Sik;Jun Jong Ho;Kim Yong Rok;Lee Sung Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1058-1064
    • /
    • 1994
  • Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.

Moisture Absorption Properties of Liquid Type Epoxy Encapsulant with Nano-size Silica for Semiconductor Packaging Materials (나노크기 실리카를 사용한 반도체용 액상 에폭시 수지 성형재료의 흡습성질)

  • Kim, Whan-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2010
  • The moisture absorption properties such as diffusion coefficient and moisture content ratio of liquid type epoxy resin systems with the filler were investigated. Bisphenol A type and Bisphenol F type epoxy resin, Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these liquid type epoxy encapsulant according to the change of filler size. The temperature of glass transition (Tg) of these epoxy resin systems was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these epoxy resin systems according to the change of time were observed at $85^{\circ}C$ and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these systems were calculated in terms of modified Crank equation based on Ficks' law. An increase of Tg and diffusion coefficient with filler size in these systems can be observed, which are attributed to the increase of free volume with Tg. The change of maximum moisture absorption ratio according to the filler size and filler content cannot be observed; however, the diffusion coefficients of these systems decreased with filler content. The diffusion via free volume is dominant in the epoxy resin systems with low nano-sized filler content; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the liquid type epoxy encapsulant with high nano-sized filler content.

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Usage of Coal in the Paradigm Shift toward Sustainable Energy (지속가능 에너지 패러다임 변화속에서 석탄의 활용)

  • Park, Jay Hyun;Yang, In Jae;Lee, Jin Soo;Lee, Cheong Ryong
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.793-807
    • /
    • 2020
  • The policy for Green New Deal will promote the shift of the application to coal as feedstock from coal as fuel. Coal can be used as fuel for production of hydrogen and as feedstock materials such as synthetic graphite or activated carbon. Hydrogen is obtained from syngas produced through Steam carbon(SC), Water-Gas Shift(WGS), and Carbonation reactions, and these processes should be used in conjunction with CO2 sequestration technology. Anthracite has a potential in terms of cost advantage as a feedstock compared to a petroleum pitch, because Synthetic graphite is prepared by heat treating an anthracite with high rank to a graphitization temperature which is in the range of 2400~2800℃, in the presence of inorganic catalyst such as silicon or iron. From several studies, it has been confirmed that coal-based activated carbon(AC) is manufactured with quality similar to the large specific surface area and much micropore volume of lignin-based AC, can be prepared. Therefore it is expected that lignin-based AC is replaced to coal-based AC.

Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance (이중벽 탄소나노튜브의 정제와 투과도에 따른 전계방출 특성 평가)

  • Ahn, KiTae;Jang, HyunChul;Lyu, SeungChul;Lee, Hansung;Lee, Naesung;Han, Moonsup;Park, Yunsun;Hong, Wanshick;Park, Kyoungwan;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at $380^{\circ}C$ for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

Purification of Single-walled Carbon Nanotubes by HCl Treatment and Analysis of the Field Emission Property (염산에 의한 단중벽 탄소나노튜브 정제와 전자방출 특성 평가)

  • Lyu, SeungChul;Jung, Dami;Ahn, KiTae;Lee, Hansung;Lee, Naesung;Park, Yunsun;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • High-quality single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic decomposition of $C_2H_2$ using Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized SWCNTs typically occurred in the form of a bundle with a diameter of 10~20 nm together with amorphous carbon and catalytic impurities, which were removed by a two-step purification process consisting of oxidation and an acid treatment. The oxidation step, using an $O_2$-Ar mixture at $380^{\circ}C$ for 5 hr in a vertical-type furnace and a $HNO_3$ treatment at $100^{\circ}C$ for one hour, was utilized to remove the amorphous carbon particles. Subsequently, metallic catalysts were removed in HCl at room temperature for 5 hr under magnetic stirring. The SWCNT suspension was prepared by dispersing the purified SWCNTs in an aqueous sodium dodecyl benzene sulfonate solution with horn-type sonication. This was then air-sprayed on glass to fabricate CNT field emitters. The samples had a turn-on field value of 4 V/${\mu}m$ and a current density of 0.67 mA/$cm^2$ at 9 V/${\mu}m$. Increasing the HCl treatment time improved the field emission properties.

Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste (커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가)

  • Cho, Dong-Wan;Jang, Jeong-Yun;Kim, Sunjoon;Yim, Gil-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.

A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea (한국 왕겨 바이오매스의 가스화를 통한 수소 생산 공정모사 예비 연구)

  • JIHYUN SON;MIRAE YU;MYUNGJI KIM;SANGHUN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.699-706
    • /
    • 2022
  • Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.