• Title/Summary/Keyword: Catalyst generation

Search Result 196, Processing Time 0.032 seconds

Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst (Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성)

  • Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

Synthesis of Cobalt Phosphates and their Catalytic Properties of the Hydrogen Generation from the Hydrolysis of NaBH4 (비결정질 코발트 인산염 합성 및 NaBH4 가수분해를 통한 수소발생 촉매 활성 연구)

  • Kim, Youngyong;Park, Joon Bum;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.743-745
    • /
    • 2015
  • Amorphous cobalt phosphates were synthesized with their distinct morphology by controlling the amount of base in the synthetic condition. The crystallinity and morphology of cobalt phosphates were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared cobalt phosphates were applied as a heterogeneous catalyst for generating hydrogen gas from the hydrolysis reaction of sodium borohydride. We found that the catalyst prepared using the least amount of base condition at room temperature showed a plate shape with less than 10 nm thickness, which resulted in the best catalytic activity among all catalysts due to the large surface area.

A Study on Preferential CO Oxidation over Supported Pt Catalysts to Produce High Purity Hydrogen (고순도 수소 생산을 위한 CO 선택적 산화 반응용 Pt 촉매 연구)

  • Jeon, Kyung-Won;Jeong, Dae-Woon;Jang, Won-Jun;Na, Hyun-Suk;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.353-358
    • /
    • 2013
  • To develop preferential CO oxidation reaction (PROX) catalyst for small scale hydrogen generation system, supported Pt catalysts have been applied for the target reaction. The supports were systematically changed to optimize supported Pt catalysts. $Pt/Al_2O_3$ catalyst showed the highest CO conversion among the catalysts tested in this study. This is due to easier reducibility, the highest dispersion, and smallest particle diameter of $Pt/Al_2O_3$. It has been found that the catalytic performance of supported Pt catalysts for PROX depends strongly on the reduction property and depends partly on the Pt dispersion of supported Pt catalysts. Thus, $Pt/Al_2O_3$ can be a promising catalyst for PROX for small scale hydrogen generation system.

High Temperature Reaction Behaviors of Oxide Materials with Carbon for Refractory Application (내화물 응용을 위한 산화물 재료들과 탄소와의 고온 반응거동)

  • Choi, Do-Mun;Lee, Jin-Seok;Kim, Nam-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.331-337
    • /
    • 2007
  • High temperature reaction behaviors of various oxide materials (such as bauxite, pyrophyllite, mullite and fused silica powders) used in the refractory materials for tap-hole plugging of blast furnace were investigated with varying temperature in the carbon surrounding. Kinetics of carbothermal reduction of $SiO_2$ for forming SiC with high corrosion resistance were strongly dependent on it's crystalline phase. SiC generation yield increased with increasing catalyst amount in oxide regardless of generated SiO gas amount at temperature of $<1500^{\circ}C$. However, in case of fused silica over $1500^{\circ}C$, SiC generation yield was dominantly influenced by SiO amount without catalyst effect. Bauxite showed the most effective carbothermal reduction reaction, since bauxite have a large amount of catalyst and well-dispersed $SiO_2$ phase in oxide matrix.

Water management for vapor-fed direct methanol fuel cells (수동급기 직접 메탄올 연료전지의 공기극 물 관리)

  • Chang, Ik-Whang;Ha, Seung-Bum;Cha, Suk-Won;Lee, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.319-322
    • /
    • 2009
  • This paper investigated environmental effects for passive, air-breathing, and vapor-feeding direct methanol fuel cells. In these experiments, experimental parameters are temperature($30^{\circ}C$, $40^{\circ}C$ and relative humidity(25%, 50%, 75%). From these experimental results, the water contents play a key role in terms of optimal ionic conductivity at the cathode catalyst layer. In case of pure methanol feeding, the performance is inversely proportional to the relative humidity. The water generation resulting from methanol crossover maintains ionic conductivity at the cathode. On the contrary, diluted methanol solution (50wt.%) lowers methanol crossover to the cathode. In order to increase ionic conductivity, the relatively high humidity is required to the cathode catalyst layer for the water generation. The relative humidity scales with the performance.

  • PDF

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature (Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions (고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성)

  • Lee, Hye-Ri;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.587-592
    • /
    • 2016
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration $NaBH_4$ solution were studied. In order to enhance the hydrogen generation yield at high concentration of $NaBH_4$, the effect of catalyst type, $NaBH_4$ concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in $NaBH_4$ solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% $NaBH_4$ solution.

Hydrolysis Reaction of NaBH4 Using Activated Cabon Supported Co-B/C, Co-P-B/C Catalyst (활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sohyeong;Kim, Youkyum;Bae, Hyojune;Kim, Dongho;Byun, Younghwan;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.641-646
    • /
    • 2018
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C, Co-P-B/C catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of carbon supported catalyst was over $500m^2/g$ and this value was 2~3 times higher than that of unsupported catalyst. Hydrogen generation of activated carbon supported catalyst was more stable than that of unsupported catalyst. The activation energy of Co-P-B/C catalyst was 59.4 kJ/mol in 20 wt% $NaBH_4$ and 14% lower than that of Co-P-B/FeCrAlloy catalyst. Catalyst loss on activated carbon supported catalyst was reduced to about 1/3~1/2 compared with unsupported catalyst, therefore durability was improved by supporting catalyst on activated carbon.

An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography (적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF