DOI QR코드

DOI QR Code

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature

Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화

  • Received : 2014.06.12
  • Accepted : 2014.06.26
  • Published : 2014.06.30

Abstract

This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

Keywords

References

  1. A. Wollner, F. Lange, H. Schmelz, and H, Knozinger, Characterization of mixed Copper-manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia., Appl. Catal. A, 94, 181-203 (1993). https://doi.org/10.1016/0926-860X(93)85007-C
  2. N.N. Sazonova, A.V. Simakov, T.A. Nikoro, G.B. Barannik, V.F. Lyakhova, V.I. Kheivot, Z.R. Ismagilov and H. Veringa, Selective Catalytic Oxidation of Ammonia to Nitrogen, React. Kinet. Catal. Lett., 57, 71-79 (1996). https://doi.org/10.1007/BF02076122
  3. J.J. Ostermaier, J.R. Katzer, and W.H. Manogue, Platinum Catalyst Deactivation in Low-temperature Ammonia Oxidation Reactions: I. Oxidation of Ammonia by Molecular Oxygen., J. Catal. 41, 277-292 (1976). https://doi.org/10.1016/0021-9517(76)90343-2
  4. Kocat INC., Soonchunhyang University Industry Academy Cooperation Foundation, 1007855230000 (2007).
  5. R. Burch and B.W.L. Southward, A Novel Application of Trapping Catalysts for the Selective Low-temperature Oxidation of $NH_{3}$ to $N_{2}$ in Simulated Biogas., J. Catal. 195, 217-226 (2000). https://doi.org/10.1006/jcat.2000.3007
  6. M. Amblard, R. Burch, and B.W.L. A Study of the Mechanism of Selective Conversion of Ammonia to Nitrogen on Ni/$\gamma$-$Al_{2}O_{3}$ under Strongly Oxidizing Conditions, Catal. Today, 59, 365-371 (2000). https://doi.org/10.1016/S0920-5861(00)00301-1
  7. L. Gang, J. van Grondelle, B.G. Anderson, and R.A. van Santen, Selective Low temperature $NH_{3}$ Oxidation to $N_{2}$ on Copper-based Catalysts, J. Catal. 186, 100-109 (1999). https://doi.org/10.1006/jcat.1999.2524
  8. M. Amblard, R. Burch, and B.W.L. Southward, The Selective Conversion of Ammonia to Nitrogen on Metal Oxide Catalysts under Strongly Oxidising Conditions, Appl. Catal. B, 22, 159-166 (1999). https://doi.org/10.1016/S0926-3373(99)00048-X
  9. J.J.P. Biermann, Ph. D. Thesis, University of Twente, (1990).
  10. M. de Boer, H.M. Huisman, R.J.M. Mos, R.G. Leliveld, A.J. Dillen, and J.W. Geus, Selective Oxidation of Ammonia to Nitrogen over $SiO_{2}$-supported $MoO_{3}$ Catalysts, Catal. Today, 17, 189-200 (1993). https://doi.org/10.1016/0920-5861(93)80023-T
  11. F.J.J.G. Janssen and F.M.G. van den Kerkhof, Selective Catalytic Removal of NO from Stationary Sources, KEMA Sci. & Techno. Reports 3, 71-85 (1985).
  12. J.P. Chen and R.T. Yang, Role of $WO_{3}$ in mixed $V_{2}O_{5}-WO_{3}/TiO_{2}$ Catalysts for Selective Catalytic Reduction of Nitric Oxide with Ammonia, Appl. Catal. 80, 135-148 (1992). https://doi.org/10.1016/0926-860X(92)85113-P
  13. G. Tuenter, W.F. van Leeuwen, and L.J.M. Snepvangers, Kinetics and Mechanism of the NOx Reduction with $NH_{3}$ on $V_{2}O_{5}-WO_{3}/TiO_{2}$ Catalyst, Ind. Eng. Chem. Prod. Res. Dev. 25, 633-636 (1986). https://doi.org/10.1021/i300024a607
  14. E.T.C. Vogt, A. Boot, A.J. van Dillen, J.W. Geus, F.J.J.G. Janssen, and F.M.G. van den Kerkhof, Preparation and Performance of a Silica-supported $V_{2}O_{5}$ on $TiO_{2}$ Catalyst for the Selective Reduction of NO with $NH_{3}$, J. Catal. 114, 313-320 (1988). https://doi.org/10.1016/0021-9517(88)90035-8
  15. J.J.P. Biermann, F.J.J.G. Janssen, M. De Boer, A.J. Van Dillen, J.W. Geus, and E.T.C. Vogt, Molybdena on Silica Catalysts: Selective Catalytic Oxidation of Ammonia to Nitrogen over $MoO_{3}$ on $SiO_{2}$ Catalysts, J. Mol. Catal. 60, 229-238 (1990). https://doi.org/10.1016/0304-5102(90)85272-J
  16. M. de Boer, A.J. van Dillen, D.C. Koningsberger, J.W. Geus, Remarkable Spreading behavior of Molybdena on Silica Catalysts. An in situ EXAFS-Raman Study, Catal. Lett., 11, 227-240 (1991). https://doi.org/10.1007/BF00764089
  17. G. Lu, B.G. Anderson, J. van Grondelle, R.A. van Santen, Low Temperature Selective Oxidation of Ammonia to Nitrogen on Silver-based Catalysts., Appl. Catal. B, 40, 101-110 (2003). https://doi.org/10.1016/S0926-3373(02)00129-7
  18. N.I. Il'chenko, G.I. Golodets, and I.M. Avilova, Kinet. Catal. 16, 1264 (1975).
  19. N.I. Il'chenko, Catalytic oxidation of ammonia, Russ. Chem. Rev. 45, 1119 (1976). https://doi.org/10.1070/RC1976v045n12ABEH002765
  20. G. Lu, B.G. Anderson, J. van Grondelle, R.A. van Santen, W.J.H. Van Gennip, J.W. Niemantsverdriet, P.J. Kooyman, A. Knoester and H.H. Brongersma, Alumina-supported Cu-Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature, J. Catal. 206, 60-70 (2002). https://doi.org/10.1006/jcat.2001.3470
  21. Y.H. Lim, J.Y. Lee, and B.H. Park, Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature, J. of Korean Oil Chemists' Soc., 30(3), 371-379 (2013). https://doi.org/10.12925/jkocs.2013.30.3.371
  22. K. Kutics and M, Suzuki, Adsorption of Organics on Surface Modified Activated Carbon Fibers, The 2nd Korea-Japan Symposium on Separation Technology, June 1-2, Seoul, 395-398 (1990).
  23. S.J. Gregg and K.S.W. Sing, Adsorption Surface area and Porosity, 2nd edi., Academic Press, Inc., London (1982).
  24. W.K. Lee, K.H. Kim, S.K. Ryu, and B.S. Park, Decomposition of NO by Cu-impregnated ACFs, Korean Chem. Eng. Res., 42(2), 196-201 (2004).