DOI QR코드

DOI QR Code

High Temperature Reaction Behaviors of Oxide Materials with Carbon for Refractory Application

내화물 응용을 위한 산화물 재료들과 탄소와의 고온 반응거동

  • Choi, Do-Mun (Department of Advanced Materials Science and Engineering, Hanyang University) ;
  • Lee, Jin-Seok (Department of Advanced Materials Science and Engineering, Hanyang University) ;
  • Kim, Nam-Hoon (Department of Advanced Materials Science and Engineering, Hanyang University) ;
  • Choi, Sung-Churl (Department of Advanced Materials Science and Engineering, Hanyang University)
  • 최도문 (한양대학교 신소재공학과) ;
  • 이진석 (한양대학교 신소재공학과) ;
  • 김남훈 (한양대학교 신소재공학과) ;
  • 최성철 (한양대학교 신소재공학과)
  • Published : 2007.06.30

Abstract

High temperature reaction behaviors of various oxide materials (such as bauxite, pyrophyllite, mullite and fused silica powders) used in the refractory materials for tap-hole plugging of blast furnace were investigated with varying temperature in the carbon surrounding. Kinetics of carbothermal reduction of $SiO_2$ for forming SiC with high corrosion resistance were strongly dependent on it's crystalline phase. SiC generation yield increased with increasing catalyst amount in oxide regardless of generated SiO gas amount at temperature of $<1500^{\circ}C$. However, in case of fused silica over $1500^{\circ}C$, SiC generation yield was dominantly influenced by SiO amount without catalyst effect. Bauxite showed the most effective carbothermal reduction reaction, since bauxite have a large amount of catalyst and well-dispersed $SiO_2$ phase in oxide matrix.

Keywords

References

  1. D. M. Choi, J. S. Lee, and S. C. Choi, 'Decomposition Behavior of Ferro-$Si_3N_4$ for High Temperature Refractory Application(in Korean),' J. Kor. Ceram. Soc., 43 [9] 582-87 (2006) https://doi.org/10.4191/KCERS.2006.43.9.582
  2. A. Yamaguchi, Refractories containing Carbon (in Jpn), pp. 3-4, Okayama Ceramics Technology Association, 2006
  3. L. S. Sigl, 'Core/Rim Structure of Liquid-Phase-Sintered Silicon Carbide,' J. Am. Ceram. Soc., 76 [3] 773-76 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03677.x
  4. Y. S. Chun and Y. W. Kim, 'Processing of Silica-Bonded Silicon Carbide Ceramics,' J. Kor. Ceram. Soc., 43 [6] 327- 32 (2006) https://doi.org/10.4191/KCERS.2006.43.6.327
  5. E. F. Neto and R. H. G. A. Kiminami, '$Al_2O_3$/mullite/SiC Powders Synthesized by Microwave-Assisted Carbothermal Reduction of Kaoline,' Ceram. Int., 27 815-19 (2001) https://doi.org/10.1016/S0272-8842(01)00035-9
  6. D. Chianghong, Z. Xianpeng, Z. Jinsong, Y. Yongjin, C. Lihua, and X. Fei, 'The Synthesis of Ultrafine SiC Powder by the Microwave Heating Technique,' J. Mater. Sci., 32 2469-72 (1997) https://doi.org/10.1023/A:1018573611420
  7. W. C. Bechtold and I. B. Cutler, 'Reaction of Clay and Carbon to Form and Separate $Al_2O_3$ and $SiO_2$,' J. Am. Ceram. Soc., 63 271-75 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10718.x
  8. C. E. Borsa, F. Spiandorello, and R. H. G. A. Kiminami, 'Synthesis of $Al_2O_3$/SiC Powder from Aluminosilicate Precursor,' Mater. Sci. Forum, 299-300 57-62 (1999) https://doi.org/10.4028/www.scientific.net/MSF.299-300.57
  9. A. C. D. Chaklader, S. D. Gupta, E. C. Y. Lin, and B. Gutowski, '$Al_2O_3$/SiC Composites from Aluminosilicates Precursors,' J. Am. Ceram. Soc., 75 [8] 2283-85 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04496.x
  10. G. W. Meng, L. D. Zhang, C. M. Mo, S. Y. Zhang, Y. Qin, S. P. Feng, and H. J. Li, 'Preparation of $\beta$-SiC Nanorods with and without Amorphous $SiO_2$ Wrapping Layers,' J. Mater. Res., 13 [9] 2533-38 (1998) https://doi.org/10.1557/JMR.1998.0353
  11. G. W. Meng, L. D. Zhang, Y. Qin, C. M. Mo, and F. Phillipp, 'Synthesis of $\beta$-SiC Nanowires with $SiO_2$ Wrappers,' Nanostruct. Mater., 12 1003-06 (1999) https://doi.org/10.1016/S0965-9773(99)00287-1
  12. G. W. Meng, Z. Cui, L. D. Zhang, and F. Phillipp, 'Growth and Characterization of Nanostructured $\beta$-SiC via Carbothermal Reduction of $SiO_2$ Xerogels Containing Carbon Nanoparticles,' J. Cryst. Growth, 209 801-06 (2000) https://doi.org/10.1016/S0022-0248(99)00435-2
  13. X. K. Li, L. Liu, Y. X. Zhang, S. D. Shen, S. Ge, and L. C. Ling, 'Synthesis of Nanometre Silicon Carbide Whiskers from Binary Carbonaceous Silica Aerogels,' Carbon, 39 [2] 159-65 (2001) https://doi.org/10.1016/S0008-6223(00)00020-8
  14. P. C. Silva and J. L. Figueiredo, 'Production of SiC and $Si_3N_4$ Whiskers in C + $SiO_2$ Solid Mixtures,' Mater. Chem. Phys., 72 326-31 (2001) https://doi.org/10.1016/S0254-0584(01)00332-7
  15. T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, and I. Ohdomari, 'Novel Interatomic Potential Energy Function for Si, O Mixed Systems,' Jpn. J. Appl. Phys., 38 L366-69 (1999) https://doi.org/10.1143/JJAP.38.L366
  16. R. D. Jong, R. A. Mccauley, and P. Tambuyser, 'Growth of Twinned $\beta$-Silicon Carbide Whiskers by the Vapor-Liquid- Solid Process,' J. Am. Ceram. Soc., 70 [11] C-338-41 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb05652.x
  17. H. Wang, Y. Berta, and G. S. Fischman, 'Microstructure of Silicon Carbide Whiskers Synthesized by Carbothermal Reduction of Silicon Nitride,' J. Am. Ceram. Soc., 75 [5] 1080-84 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb05541.x
  18. P. D. Miller, J. G. Lee, and I. B. Cutler, 'The Reduction of Silica with Carbon and Silicon Carbide,' J. Am. Ceram. Soc., 62 [3-4] 147-49 (1979) https://doi.org/10.1111/j.1151-2916.1979.tb19041.x

Cited by

  1. Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals vol.53, pp.5, 2016, https://doi.org/10.4191/kcers.2016.53.5.557