• Title/Summary/Keyword: Catalyst electrode

Search Result 300, Processing Time 0.025 seconds

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF

Performance of Large Electrode Single Cell for Proton-Exchange-Membrane Fuel Cells (고체고분자 연료전지용 대면적 단위전지의 특성)

  • Chun, Y.G.;Kim, C.S.;Peck, D.H.;Jung, D.H.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1255-1257
    • /
    • 1997
  • In order to obtain key technologies for a kW class internal humidifying proton-exchange-membrane fuel cell (PEMFC) a single cell with a large electrode area has been designed and manufactured and the performance of large area membrane/electrode assemblies (MEAs) has been evaluated by using the single cell. A small area MEA made of commercial E-TEK electrode and Nafion 117 membrane showed a performance of 0.7V, $300mA/cm^2$ whereas large area MEA made of catalyst layer on carbon support and Nafion 117 showed a lower performance. To improve the performance of large MEA direct coating of catalyst was carried out on the membrane using a screen printer.

  • PDF

Electrochemical Reduction of Xylose to Xylitol by Whole Cells or Crude Enzyme of Candida peltata

  • Park Sun Mi;Sang Byung In;Park Dae Won;Park Doo Hyun
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.451-455
    • /
    • 2005
  • In this study, whole cells and a crude enzyme of Candida peltata were applied to an electrochemical bioreactor, in order to induce an increment of the reduction of xylose to xylitol. Neutral red was utilized as an electron mediator in the whole cell reactor, and a graphite-Mn(IV) electrode was used as a catalyst in the enzyme reactor in order to induce the electrochemical reduction of $NAD^+$ to NADH. The efficiency with which xylose was converted to xylitol in the electrochemical bioreactor was five times higher than that in the conventional bioreactor, when whole cells were employed as a biocatalyst. Meanwhile, the xylose to xylitol reduction efficiency in the enzyme reactor using the graphite-Mn (IV) electrode and $NAD^+$ was twice as high as that observed in the conventional bioreactor which utilized NADH as a reducing power. In order to use the graphite-Mn(IV) electrode as a catalyst for the reduction of $NAD^+$ to NADH, a bioelectrocatalyst was engineered, namely, oxidoreductase (e.g. xylose reductase). $NAD^+$ can function in this biotransformation procedure without any electron mediator or a second oxidoreductase for $NAD^+/NADH$ recycling

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Electrochemical Characteristics of the Oxygen Electrode for Alkaline Fuel Cells -Impregnation of Silver Catalyst on Carbon Black with Colloidal Method- (알칼리형 연료전지용 산소극의 전기화학적 특성고찰 -콜로이드 방법에 의한 카본블랙상 은촉매담지-)

  • Lee, Hong-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.701-709
    • /
    • 1992
  • Silver particles were impregnated on carbon black with colloidal method and used as catalyst for oxygen electrode in alkaline fuel cell. With the addition of sodium dodecylbenzenesulfonate in $AgNO_3$ and $NaBH_4$solution, colloidal solution was made and confirmed with electrophoresis test. Effects of particle size on electrode performance were studied and $200{\AA}$ of silver particle size shown the highest value of mass activity. The aggromeration of silver particle was Influenced with surfactant amount, stirring time and heat treatment. Considering the increase of particle size caused of operating temperature, recommendable particle size of silver catalyst for manufacturing the electrode was $100{\AA}$. Dispersity of carbon black was investigated and reagglomeration was appeared after homogenizing 30 sec.

  • PDF

Study of an electrochemical analysis method for Indole-3-Acetic Acid based on reduced graphene oxide composite catalyst coated screen-printed carbon electrode (환원 그래핀 옥사이드 복합 촉매가 코팅된 스크린 프린트 탄소전극 기반 Indole-3-Acetic Acid 전기화학분석법 연구)

  • Yoo-Jin Weon;Min-Yeong Kim;Young-Bae Park;Kyu Hwan Lee
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.265-273
    • /
    • 2024
  • An amperometric sensor for measuring indole-3-acetic acid (IAA) was studied based on a screen-printed carbon electrode (SPCE) coated with a reduced graphene oxide composite electrocatalyst. The PEI-GO dispersion is uniformly formed through a nucleophilic substitution reaction between the active amine group of Polyethyleneimine (PEI) and the epoxide group exposed on the surface of graphene oxide. And The 3-dimensional PEI-rGO AG (Polyethyleneimine-reduced graphene oxide aerogel) complex was easily prepared through simple heat treatment of the combined PEI-GO dispersion. The proposed composite catalyst electrode, PEI-rGO AG/SPCE, showed a two linear relationship in the low and high concentrations in IAA detection, and the linear equation was Ipa = 0.2883C + 0.0883 (R2=0.9230) at low concentration and Ipa = 0.00464C + 0.6623 (R2=0.9894) at high concentration was proposed, and the detection limit was calculated to be 203.5nM±33.2nM. These results showed the applicability of the PEI-rGO AG composite catalyst as an electrode material for electrocatalysts for the detection of IAA.

Electro-oxidation of Cyclohexanol on a Copper Electrode Modified by Copper-dimethylglyoxime Complex Formed by Electrochemical Synthesis

  • Hasanzadeh, Mohammad.;Shadjou, Nasrin.;Saghatforoush, Lotfali.;Khalilzadeh, Balal.;Kazeman, Isa.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2943-2948
    • /
    • 2009
  • Copper-dimethylglyoxime complex (CuDMG) modified Copper electrode (Cu/CuDMG) showed a catalytic activity towards cyclohexanol oxidation in NaOH solution. The modified electrode prepared by the dimethylglyoxime anodic deposition on Cu electrode in the solution contained 0.20 M $NH_4Cl\;+\;NH_4OH\;(pH\;9.50)\;and\;1\;{\times}\;10^{-4}$ M dimethylglyoxime. The modified electrode conditioned by potential recycling in a potential range of -900${\sim}$900 mV vs. Ag/AgCl by cyclic voltammetry in alkaline medium (1 M NaOH). The results show that the CuDMG film on the electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in alkaline medium via Cu (III) species formed on the electrode.

Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode (고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구)

  • Sridhar, Parthasarathi;Ihm, Jae-Wook;Yu, Hyung-Kyun;Ryu, Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

Performance change according to the catalyst intrusion rate in the MEA for the PEM water electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.254-256
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

Performance Change according to the Catalyst Intrusion Rate in the MEA for the PEM Water Electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl;Lee, Ji-Jung;Lee, Jae-Young;Lee, Hong-Ki
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.75-78
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF