DOI QR코드

DOI QR Code

Study of an electrochemical analysis method for Indole-3-Acetic Acid based on reduced graphene oxide composite catalyst coated screen-printed carbon electrode

환원 그래핀 옥사이드 복합 촉매가 코팅된 스크린 프린트 탄소전극 기반 Indole-3-Acetic Acid 전기화학분석법 연구

  • Yoo-Jin Weon (Surface Technology Division, Korea Institute of Materials Science) ;
  • Min-Yeong Kim (Surface Technology Division, Korea Institute of Materials Science) ;
  • Young-Bae Park (School of Materials Science and Engineering, Andong National University) ;
  • Kyu Hwan Lee (Surface Technology Division, Korea Institute of Materials Science)
  • 원유진 (한국재료연구원 표면기술본부) ;
  • 김민영 (한국재료연구원 표면기술본부) ;
  • 박영배 (국립안동대학교 반도체.신소재공학과 청정에너지 소재기술연구센터) ;
  • 이규환 (한국재료연구원 표면기술본부)
  • Received : 2024.04.16
  • Accepted : 2024.07.16
  • Published : 2024.08.31

Abstract

An amperometric sensor for measuring indole-3-acetic acid (IAA) was studied based on a screen-printed carbon electrode (SPCE) coated with a reduced graphene oxide composite electrocatalyst. The PEI-GO dispersion is uniformly formed through a nucleophilic substitution reaction between the active amine group of Polyethyleneimine (PEI) and the epoxide group exposed on the surface of graphene oxide. And The 3-dimensional PEI-rGO AG (Polyethyleneimine-reduced graphene oxide aerogel) complex was easily prepared through simple heat treatment of the combined PEI-GO dispersion. The proposed composite catalyst electrode, PEI-rGO AG/SPCE, showed a two linear relationship in the low and high concentrations in IAA detection, and the linear equation was Ipa = 0.2883C + 0.0883 (R2=0.9230) at low concentration and Ipa = 0.00464C + 0.6623 (R2=0.9894) at high concentration was proposed, and the detection limit was calculated to be 203.5nM±33.2nM. These results showed the applicability of the PEI-rGO AG composite catalyst as an electrode material for electrocatalysts for the detection of IAA.

Keywords

Acknowledgement

This work was supported by the Miryang-si (PICP120)

References

  1. B. Wu, H. Xu, Y. Shi, H. Zhou, Y. Li, H.d. Deng, J. Ye, Y. Long, Y. Lan, Online monitoring of indole-3-acetic acid in living plants based on nitrogen-doped carbon nanotubes/core-shell Au@Cu2O nanoparticles/carbon fiber electrochemical microsensor, ACS Sustainable Chemistry & Engineering, 10 (2022) 13465-13475. https://doi.org/10.1021/acssuschemeng.2c04222
  2. Y. Hu, X. Wang, C. Wang, P. Hou, H. Dong, B. Luo, A. Li, A multifunctional ratiometric electrochemical sensor for combined determination of indole-3-acetic acid and salicylic acid, Analytical Chemistry, 10 (2020) 3115-3121.
  3. Y. Chen, Y. Sun, Y. Niu, B. Wang, Z. Zhang, L. Zeng, W. Sun, Portable electrochemical sensing of indole-3-acetic acid based on self-assembled MXene and multi-walled carbon nanotubes composite modified screen-printed electrode, Electroanalysis, 35 (2023) 1-9.
  4. J. Liang, F. Yan, C. Jiang, L. Xie, Y. Wang, T. Li, L. Zheng, J. Wang, D. Ning, L. Tang, Y. Ya, In situ one-step electrochemical preparation of mesoporous molecularly imprinted sensor for efficient determination of indole-3-acetic acid, Journal of Electroanalytical Chemistry, 905 (2022) 116000.
  5. M. Li, Y. Kuang, Z. Fan, X. Qin, S. Hu, Z. Liang, Q. Liu, W. Zhang, B. Wang, Z. Su, Simultaneous electrochemical sensing of indole-3-acetic acid and salicylic acid on poly(L-Proline) nanoparticles-carbon dots-multiwalled carbon nanotubes composite-modified electrode, Sensors (Basel), 22 (2022) 2222.
  6. J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion, Energy & Environmental Science, 11 (2018) 772-799. https://doi.org/10.1039/C7EE03031B
  7. S. Korkmaz, I.A. Kariper, Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications, Journal of Energy Storage, 27 (2020) 101038.
  8. M.Y. Kim, K.D. Seo, H. Park, R.G. Mahmudunnabi, K.H. Lee, Y.B. Shim, Graphene-anchored conductive polymer aerogel composite for the electrocatalytic detection of hydrogen peroxide and bisphenol A, Applied Surface Science, 604 (2022) 154430.
  9. M.Y. Kim, H. Park, J.Y. Lee, D.J. Park, J.Y. Lee, N.V. Myung, K.H. Lee, Hierarchically palladium nanoparticles embedded polyethyleneimine-reduced graphene oxide aerogel (RGA-PEI-Pd) porous electrodes for electrochemical detection of bisphenol A and H2O2, Chemical Engineering Journal, 431 (2022) 134250.
  10. R. Muzyka, M. Kwoka, L. Smedowski, N. Diez, G. Gryglewicz, Oxidation of graphite by different modified Hummers methods, New Carbon Materials, 32 (2017) 15-20. https://doi.org/10.1016/S1872-5805(17)60102-1
  11. H. Liu, Y. Zhou, Y. Yang, K. Zou, R. Wu, K. Xia, S. Xie, Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution, Applied Surface Science, 471 (2019) 88-95.
  12. Q. Gu, X. Chen, C. Lu, Z. Wang, B. Xu, A highly sensitive electrochemical sensor for detecting the content of capsaicinoids based on the synergistic catalysis of rGO/PEI-CNTs/β-CD, Food Chemistry, 426 (2023) 136650.
  13. E.M. Rabie, A.A. Shamroukh, M. Khodari, A novel electrochemical sensor based on modified carbon paste electrode with ZnO nanorods for the voltammetric determination of indole-3-acetic acid in plant seed extracts, Electroanalysis, 34 (2022) 883-891. https://doi.org/10.1002/elan.202100420