DOI QR코드

DOI QR Code

A Review on Dielectric Breakdown of Anodic Oxide Films on Aluminum Alloys

  • Hien Van Pham (Energy & Environment Materials Research Division, Korea Institute of Materials Science) ;
  • Cheolnam Yang (Energy & Environment Materials Research Division, Korea Institute of Materials Science) ;
  • Sungmo Moon (Energy & Environment Materials Research Division, Korea Institute of Materials Science)
  • Received : 2024.07.03
  • Accepted : 2024.08.22
  • Published : 2024.08.31

Abstract

This paper reviews the dielectric breakdown resistance and behavior of anodic oxide films in air environment. It begins with a description of the dielectric breakdown mechanisms of dielectric materials. The paper then introduces different types of dielectric materials and compares them in terms of dielectric strength, thermal conductivity, mechanical strength and cost. Next, the paper summarizes various fabrication methods for dielectric aluminum oxide layers, discussing the advantages and disadvantages of each method. Finally, it provides an overview of current studies on the dielectric breakdown properties of anodic aluminum oxide films formed on different aluminum alloys in various electrolytes.

Keywords

Acknowledgement

This work was supported financially by Fundamental Research Program of the Korean Institute of Materials Science (PNK9790).

References

  1. J.M. Runge, The Metallurgy of Anodizing Aluminum, Springer, Cham, Switzerland (2018) 40-57. 
  2. J.R. Davis, Aluminum and Aluminum Alloys, ASM International, Materials Park, Ohio, USA (1993) 351-416. 
  3. Y. Sun, The use of aluminum alloys in structures: Review and outlook, Structures, 57 (2023) 105290. 
  4. W. Lee, S.J. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures, Chemical Reviews, 114 (2014) 7487-7556.  https://doi.org/10.1021/cr500002z
  5. V. Dias, H. Maciel, M. Fraga, A.O. Lobo, R. Pessoa, F.R. Marciano, Atomic layer deposited TiO2 and Al2O3 thin films as coatings for aluminum food packaging application, Materials, 12 (2019) 682. 
  6. V. Dias, W. Chiappim, M. Fraga, H. Maciel, F. Marciano, R. Pessoa, Atomic layer deposition of TiO2 and Al2O3 thin films for the electrochemical study of corrosion protection in aluminum alloy cans used in beverage, Materials Research Express, 7 (2020) 076408. 
  7. I. Nasution, A. Velasco, H.J. Kim, Atmospheric pressure chemical vapor deposition mechanism of Al2O3 film from AlCl3 and O2, Journal of Crystal Growth, 311 (2009) 429-434.  https://doi.org/10.1016/j.jcrysgro.2008.11.061
  8. D. Singh, A. Saini, V. Dhayal, D.C. Agarwal, Oxime-modified aluminum (III) isopropoxide: A promising solgel precursor for corrosion resistive nano-alumina coating on an aluminum alloy, Protection of Metals and Physical Chemistry of Surfaces, 55 (2019) 682-688.  https://doi.org/10.1134/S2070205119040245
  9. A. Saini, D. Singh, The effect of coating morphology on anti-corrosion behavior of modified alumina coating over aluminum alloy, Protection of Metals and Physical Chemistry of Surfaces, 57 (2021) 995-1001.  https://doi.org/10.1134/S2070205121050221
  10. M. Rahman, J. Profili, L. Stafford, C. Moreau, Surface preparation of aluminum by atmospheric-pressure plasma jet for suspension plasma sprayed ceramic coatings, Surface and Coatings Technology, 476 (2024) 130175. 
  11. Y. Gu, J. Pan, H. Lu, J. Xiao, C. Ma, N. Yu, Numerical and experimental study on the deposition mechanisms of plasma spraying on 7075 aluminum alloy, Journal of Materials Engineering and Performance, 33 (2024) 1071-1080. 
  12. H.V. Pham, D.Y. Kwon, J.S. Kim, R.G. Kim, S.M. Moon, Formation behavior of anodizing films on various aluminum alloys in oxalic acid solution, Materials Chemistry and Physics, 315 (2024) 128953. 
  13. S.H. Moon, S.M. Moon, P.K. Song, A study on the growth and burning of anodic oxide films on Al6061 alloy during anodizing at constant voltages, Journal of the Korean Institute of Surface Engineering, 53 (2020) 15-21.  https://doi.org/10.5695/JKISE.2020.53.1.15
  14. S.H. Moon, S.M. Moon, S.G. Lim, Formation characteristics of hard anodizing films on 6xxx aluminum alloys, Journal of the Korean Institute of Surface Engineering, 52 (2019) 203-210.  https://doi.org/10.5695/JKISE.2019.52.4.203
  15. S.M. Moon, C.N. Yang, S.J. Na, Formation behavior of anodic oxide films on Al7075 alloy in sulfuric acid solution, Journal of the Korean Institute of Surface Engineering, 47 (2014) 155-161.  https://doi.org/10.5695/JKISE.2014.47.4.155
  16. S.M. Moon, Y.S. Jeong, Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions, Corrosion Science, 51 (2009) 1506-1512.  https://doi.org/10.1016/j.corsci.2008.10.039
  17. S.M. Moon, J.S. Kim, H.C. Shin, Effect of form of applied current on the formation behavior of PEO films on Al6082 alloy, Journal of the Korean Institute of Surface Engineering, 55 (2022) 9-17.  https://doi.org/10.5695/JSSE.2022.55.1.9
  18. H.V. Pham, D.Y. Kwon, J.S. Kim, S.M. Moon, Dielectric breakdown behavior of anodic oxide films formed on pure aluminum in sulfuric acid and oxalic acid electrolytes, Journal of the Korean Institute of Surface Engineering, 56 (2023) 169-179.  https://doi.org/10.5695/JSSE.2023.56.3.169
  19. A.V. Hippel, Der Mechanismus des "elektrischen "Durchschlages in festen Isolatoren. I, Zeitschrift fur Physik, 67 (1931) 707-724.  https://doi.org/10.1007/BF01390754
  20. A.V. Hippel, Der Mechanismus des "elektrischen "Durchschlages in festen Isolatoren. II, Zeitschrift fur Physik, 68 (1931) 309-324.  https://doi.org/10.1007/BF01390864
  21. A.V. Hippel, Elektrische Festigkeit und Kristallbau: Der Mechanismus des elektrischen Durchschlages in festen Isolatoren III, Zeitschrift fur Physik, 75 (1932) 145-170.  https://doi.org/10.1007/BF01341768
  22. H. Frohlich, Dielectric breakdown in solids, Reports on Progress in Physics, 6 (1939) 411. 
  23. H. Frohlich, B. Paranjape, Dielectric breakdown in solids, Proceedings of the Physical Society. Section B, 69 (1956) 21. 
  24. J.J. O'dwyer, The theory of avalanche breakdown in solid dielectrics, Journal of Physics and Chemistry of Solids, 28 (1967) 1137-1144.  https://doi.org/10.1016/0022-3697(67)90057-1
  25. V. Fock, Zur Warmetheorie des elektrischen Durchschlages, Archiv fur Elektrotechnik, 19 (1927) 71-81.  https://doi.org/10.1007/BF01656306
  26. P.H. Moon, The theory of thermal breakdown of solid dielectrics, Transactions of the American Institute of Electrical Engineers, 50 (1931) 1008-1021.  https://doi.org/10.1109/T-AIEE.1931.5055909
  27. K.W. Wagner, Der elektrische Durchschlag von festen Isolatoren, Archiv fur Elektrotechnik, 39 (1948) 215-233.  https://doi.org/10.1007/BF01619168
  28. K. Stark, C. Garton, Electric strength of irradiated polythene, Nature, 176 (1955) 1225-1226.  https://doi.org/10.1038/1761225a0
  29. J. C. Fothergill, Filamentary electromechanical breakdown, IEEE Transactions on Electrical Insulation, 26 (1991) 1124-1129.  https://doi.org/10.1109/14.108149
  30. H. Zhou, F.G. Shi, B. Zhao, Thickness dependent dielectric breakdown of PECVD low-k carbon doped silicon dioxide dielectric thin films: modeling and experiments, Microelectronics Journal, 34 (2003) 259-264.  https://doi.org/10.1016/S0026-2692(03)00006-5
  31. J.B. Song, J.T. Kim, S.G. Oh, J.S. Shin, J.R. Chun, J.Y. Yun, Effect of sealing time of anodic aluminum oxide (AAO) film for preventing plasma damage, Science of Advanced Materials, 7 (2015) 127-132.  https://doi.org/10.1166/sam.2015.2091
  32. J.S. Shin, M.J. Kim, J.B. Song, N.G. Jeong, J.T. Kim, J.Y. Yun, Fluorine plasma corrosion resistance of anodic oxide film depending on electrolyte temperature, Applied Science and Convergence Technology, 27 (2018) 9-13.  https://doi.org/10.5757/ASCT.2018.27.1.9
  33. J.B. Song, E.M. Choi, S.G. Oh, J.H. So, S.S. Lee, J.T. Kim, J.Y. Yun, Improved reliability of breakdown voltage measurement of yttrium oxide coatings by plasma spray, Ceramics International, 45 (2019) 22169-22174.  https://doi.org/10.1016/j.ceramint.2019.07.238
  34. J.H. So, E.M. Choi, J.T. Kim, J.S. Shin, J.B. Song, M.J. Kim, C.W. Chung, J.Y. Yun, Improvement of plasma resistance of anodic aluminum-oxide film in sulfuric acid containing Cerium (IV) ion, Coatings, 10 (2020) 103. 
  35. N.G. Jeong, J.H. Park, A study on the properties of anodic oxide films formed on Al alloys in oxalic acid, Journal of the Korean Institute of Surface Engineering, 53 (2020) 249-256.  https://doi.org/10.5695/JKISE.2020.53.5.249
  36. M.J. Kim, E.M. Choi, J.H. So, J.S. Shin, C.W. Chung, S.J. Maeng, J.Y. Yun, Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature, Journal of Materials Research and Technology, 11 (2021) 219-226.  https://doi.org/10.1016/j.jmrt.2020.12.086
  37. N.G. Jeong, J.S. Choi, Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings, Journal of the Korean Institute of Surface Engineering, 54 (2021) 30-36.  https://doi.org/10.5695/JKISE.2021.54.1.30
  38. C.G. Park, J.H. Jang, Y.S. Hyun, S.M. Moon, Dielectric breakdown of anodic oxide films formed on AA6061 in 20% H2SO4 and 8% H2SO4+3% C2H2O4 solutions, The Korean Society of Surface Science and Engineering, 57 (2024) 8-13.