• Title/Summary/Keyword: Catalase activity

Search Result 1,188, Processing Time 0.026 seconds

Anti-oxidative Effect of Salvia miltiorrhiza Bunge in Caenorhabditis elegans (단삼의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Yeong Jee;Kim, Jun Hyeong;Noh, Yun Jeong;Kim, Su Jin;Hwang, In Hyun;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.322-327
    • /
    • 2018
  • Methanol extract of Salvia miltiorrhiza Bunge (Labiatae) root was investigated to research the anti-oxidative activity, by using a Caenorhabditis elegans model system. The methanol extract of this plant showed significant DPPH radical scavenging and superoxide quenching activities. Ethyl acetate soluble fraction of the methanol extract that showed the most potent DPPH radical scavenging and superoxide quenching activities. The ethyl acetate fraction was tested on its activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance in C. elegans. Furthermore, in order to see if regulation of stress-response genes is responsible for the increased stress tolerance of the ethyl acetate fraction treated C. elegans, we checked SOD-3 expression using a transgenic strain. Consequently, the ethyl acetate fraction of S. miltiorrhiza root increased the catalase and SOD activities in a dose-dependent manner in C. elegans. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity than the non-treated ones.

Antidiabetic activity of Cultivated Cordyceps pruinosa

  • Kim, Tae-Woong;Sung, Jae-Mo;Yang, Ki-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.209.3-209.3
    • /
    • 2003
  • Cordyceps species has been used as antiinflammatory, antitoxic, diuretic in folk remedies. Recent research has been reported the effect of anticancer, antidiabetic, antimutagenic, antilipid peroxidation. We examined the antidiabetic activity of cultivated Cordyceps pruinosa on streptozotocin-induced diabetic rats. The blood glucose level was recovered by treatment with Cordyceps pruinosa ethanol extract. The contents of GPT, total cholesterol and xanthine oxidase, glutathione peroxidase, catalase activities of the cytosol were significantly decreased as compared to the diabetic group. (omitted)

  • PDF

Comparative Analysis of the Antioxidant Activities of Green Peppers Cultivated under Conventional and Environmental-Friendly Farming conditions

  • Choi, Jang-Yeol;Choi, Yeo-Jin;Lee, Seong-Gene
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Environmental-friendly agriculture (EFA) is defined as the cultivation of crops with reduced amounts or without chemical-synthetic pesticides. Recently, the use of chemical pesticides has decreased significantly; therefore, we cultivated peppers following EFA- and conventional methods and compared their antioxidant activities. To accomplish this, the environmental-friendly cultivated peppers (EFPE) and conventionally cultivated peppers (CCPE) were extracted with 70% methanol and the effects of the extracts on the cell viability, intracellular ROS generation, lipid peroxidation and catalase activity of HepG2 cells were evaluated. EFPE showed a stronger protective effect against oxidative stress induced-cell death than that of CCPE. EFPE also reduced intracellular ROS generation (42.7% to 26.4%) following treatment with hydrogen peroxide more effectively than that of CCPE (24.2% to 6.3%). Furthermore, EFPE and CCPE showed protective effects against lipid peroxidation and induced catalase activity, although these effects were not statistically significant. Taken together, these results suggest that EFPE showed stronger antioxidant activities than CCPE, and thus represent evidence that EFA with biocontrol materials may improve the functional properties of crops and/or secondary metabolites with antioxidant activities when compared with conventional agricultural practices.

Protective effect of Salviae-radix extraction in $H_2O_2$ induced renal cell injury ($H_2O_2$에 의한 신장(腎臟) 세포 손상에 대한 단삼(丹參) 추출물의 방지 효과)

  • Kim, Sang-Beum;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.38-48
    • /
    • 1998
  • This study was undertaken to determine whether Salviae-radix (SVR) extraction prevents the oxidant-induced cell injury and thereby exerts protective effect against oxidant-induced inhibition of tetraethylammonium uptake (TEA) in renal corticaJ sices. SVR (5%) attenuated $H_2O_2-induced$ inhibition of TEA uptake. $H_2O_2$ increased LDH release and lipid peroxidation in a dose-dependent manner. These changes were prevented by SVR extraction. The protective effect of SVR on LDH release was dose-dependent over the concentration range of 0.1-0.5%, and that on lipid peroxidation over the concentration ranges of 0.05-2%. SVR significantly prevented Hg-induced lipid peroxidation. SVR extraction (0.5%) increased cellular GSH content in normal and $H_2O_2-treated$ tissues. When slices were treated with 100 mM $H_2O_2$, catalase activity was decreased, which was prevented by 0.5% SVR extraction. The activity of glutathione peroxidase but not superoxide dismutase was significantly increased by 0.5% SVR extraction in $H_2O_2-treated$ tissuces. These results suggest that SVR has an antioxidant action and thereby exerts benefical effect against oxidant-induced impairment of membrane transport function. This effect of SVR is attributed to an increase in endogenous antioxidants such as GSH, catalase and glutathione peroxidase.

  • PDF

Crocin Improves Oxidative Stress by Potentiating Intrinsic Anti-Oxidant Defense Systems in Pancreatic Cells During Uncontrolled Hyperglycemia

  • Yaribeygi, Habib;Noroozadeh, Ali;Mohammadi, Mohammad Taghi;Johnston, Thomas P.;Sahebkar, Amirhossein
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 2019
  • Introduction: Oxidative stress (OS) during uncontrolled hyperglycemia has a pivotal role in pancreatic dysfunction. Our study aimed to demonstrate that crocin can potentiate anti-oxidant defense systems of pancreatic cells to improve oxidative stress. Methods: Male Wistar rats were divided randomly into four groups: a normal group, a normal-treated group, a diabetic group and a diabetic-treated group (n = 6 rats per group). Diabetes was induced by a single dose of streptozotocin (45 mg/kg/IV). The treated groups received crocin daily for 8 weeks (40 mg/kg/IP). At the end of the experiment, rats were sacrificed and pancreas tissue was obtained. Subsequently, the concentrations of malondialdehyde (MDA), nitrate and glutathione as well as the enzymatic activities of catalase and superoxide dismutase (SOD) were determined in all animals. Data were analyzed by two-way ANOVA with appropriate post hoc testing and a probability value of P < 0.05 was considered to represent a statistically significant difference in mean values. Results: Uncontrolled hyperglycemia weakened the anti-oxidant system by decreasing SOD and catalase enzyme activity in pancreatic tissues and induced OS by increasing the MDA content in diabetic non-treated animals. Crocin potentiated the anti-oxidant defense system by increasing the activity of both SOD and catalase, and improved OS by diminishing MDA production in pancreatic cells of rats contained in the diabetic-treated group. Conclusion: Based on our results, it is concluded that uncontrolled hyperglycemia can weaken the anti-oxidant defense system and cause the development of OS. Also, crocin can improve OS in pancreatic cells by potentiating the anti-oxidant defense system.

Hesperidin and Hesperetin Protect against Oxidative Stress on Hepatic Toxicity in Rats (Hesperidin과 Hesperetin의 간 손상 동물모델에서 산화적 스트레스에 대한 간 보호 효과)

  • Kim, Ji Hyun;Li, Li;Kim, Mi Suk;Cho, Eun Ju;Kim, Hyun Young;Choi, Jine Shang
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Objectives: To investigate the protective effect of hesperidin and hesperetin against oxidative stress in 2,2'-azobis (2-aminopropane) dihydrochloride (AAPH)-induced liver toxicity in rats. Methods: Hesperidin or hesperetin (200 mg/kg/day, respectively) was orally administered for 7 days once daily in rats. Subsequently, AAPH (50 mg/kg/day) was administered intraperitoneally. Lipid peroxidation, nitric oxide production, catalase activity, and protein expressions of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in the liver tissues were measured. Results: Administration of hesperidin and hesperetin significantly decreased serum aspartate transaminase and alanine transaminase levels in AAPH-induced oxidative stress liver tissues compared with control group. Lipid peroxidation and nitric oxide (NO) production were also significantly reduced by hesperidin and hesperetin in AAPH-induced oxidative stress liver tissues. In particular, lipid peroxidation levels of hesperetin-administered group significantly decreased to 5.02 nmole/mg protein in oxidative stress rats. Hesperidin and hesperetin significantly increased antioxidant activity, such as that of catalase. Furthermore, administration of hesperidin and hesperetin substantially down-regulated the expression of NF-κB and iNOS in liver tissues. Administration of hesperidin reduced NO levels and iNOS expression more than in the hesperetin-administered group. Conclusions: Administration of hesperidin and hesperetin led to a reduction in AAPH-induced liver toxicity by regulating oxidative stress.

Intrathecal administration of naringenin improves motor dysfunction and neuropathic pain following compression spinal cord injury in rats: relevance to its antioxidant and anti-inflammatory activities

  • Fakhri, Sajad;Sabouri, Shahryar;Kiani, Amir;Farzaei, Mohammad Hosein;Rashidi, Khodabakhsh;Mohammadi-Farani, Ahmad;Mohammadi-Noori, Ehsan;Abbaszadeh, Fatemeh
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.291-302
    • /
    • 2022
  • Background: Spinal cord injury (SCI) is one of the most debilitating disorders throughout the world, causing persistent sensory-motor dysfunction, with no effective treatment. Oxidative stress and inflammatory responses play key roles in the secondary phase of SCI. Naringenin (NAR) is a natural flavonoid with known anti-inflammatory and antioxidative properties. This study aims at evaluating the effects of intrathecal NAR administration on sensory-motor disability after SCI. Methods: Animals underwent a severe compression injury using an aneurysm clip. About 30 minutes after surgery, NAR was injected intrathecally at the doses of 5, 10, and 15 mM in 20 µL volumes. For the assessment of neuropathic pain and locomotor function, acetone drop, hot plate, inclined plane, and Basso, Beattie, Bresnahan tests were carried out weekly till day 28 post-SCI. Effects of NAR on matrix metalloproteinase (MMP)-2 and MMP-9 activity was appraised by gelatin zymography. Also, histopathological analyses and serum levels of glutathione (GSH), catalase and nitrite were measured in different groups. Results: NAR reduced neuropathic pain, improved locomotor function, and also attenuated SCI-induced weight loss weekly till day 28 post-SCI. Zymography analysis showed that NAR suppressed MMP-9 activity, whereas it increased that of MMP-2, indicating its anti-neuroinflammatory effects. Also, intrathecal NAR modified oxidative stress related markers GSH, catalase, and nitrite levels. Besides, the neuroprotective effect of NAR was corroborated through increased survival of sensory and motor neurons after SCI. Conclusions: These results suggest intrathecal NAR as a promising candidate for medical therapeutics for SCI-induced sensory and motor dysfunction.

Immobilization of Bacillus sp. Strains, Catalase Producing Bacteria and Their Hydrogen Peroxide Removal Characteristics (카탈라제를 생산하는 고초균 (Bacillus sp.)의 고정화 및 과산화수소 분해 특성)

  • Han, Kyung-Ah;Jang, Yun-Hee;Rhee, Jong-Il
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.520-526
    • /
    • 2010
  • In this work we have investigated the production of catalase from Bacillus sp. strains, which were screened and identified from soil. These strains were cultivated in shaking flasks with tryptic soy broth (TSB) at $30^{\circ}C$ and 200 rpm. Effects of the temperature and pH on the stability of the native catalase and whole cell viability were studied in the temperature range of $25-60^{\circ}C$ and the pH range of 7-13. Korean natural zeolite was added to culture medium and mixed with microorganisms for 24 hours. The native catalase maintained its activity over $50^{\circ}C$. The enzyme acitiviy of the catalase from Bacillus flexus BKBChE-3 was highest among the Bacillus sp. strains studied. Bacillus flexus BKBChE-3 and immobilized Bacillus cells have survived under extreme conditions of over $50^{\circ}C$ and pH 12. 60 mL of 10.5 mM $H_2O_2$ solution were entirely removed within 1 hour with catalase produced from Bacillus sp. on the flask. When Bacillus cells were immobilized on Korean natural zeolite, colony forming unit of Bacillus flexus BKBChE-3 was increased and high efficiency of hydrogen peroxide removal was observed.

Studies on the Change of Enzyme Activities during the Fermentation of Tobacco Leaves (엽연초(葉煙草) 발효중(醱酵中) 효소활성도(酵素活性度)의 변화(變化)에 관(關)한 연구(硏究))

  • Kim, H.S.;Chun, J.K.;Lee, S.R.;Bae, H.W.;Sung, H.S.
    • Applied Biological Chemistry
    • /
    • v.8
    • /
    • pp.75-80
    • /
    • 1967
  • In order to investigate the change of enzyme activities during the fermentation of tobacco leaves, whole and cut leaves were treated for twenty days at $30^{\circ}C$ and $39^{\circ}C$ by the normal procedure and inoculation of yeast, respectively, and the activity of several enzymes was measured at proper intervals. 1) Alpha-amylase activity was steadily decreased with the progress of fermentation. 2) Invertase and catalase activities were steadily decreased until the mid of the period, and then increased again toward the end of the fermentation. The latter enzyme activity showed more marked change than the former. 3) Most of the polyphenol oxidase activity were decreased abruptly in the early stage of the fermentation, and thereafter leveled down slowly. 4) Peroxidase activity was detected throughout the fermentation but no remarkable change was observed. 5) Protease activtty was not detected through the fermentation period.

  • PDF

Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響))

  • Kim, Hyoung-Soon;Bae, Young-Chun;Lee, Sang-Min;Kim, Kyung-Yo;Won, Kyoung-Sook;Sihm, Gyue-Hearn;Park, Su-Jeong
    • Journal of Sasang Constitution and Immune Medicine
    • /
    • v.15 no.1
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF