References
- Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004 ; 55 : 373-99. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015 ; 5 : 472-84. https://doi.org/10.3390/biom5020472
- Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007 ; 39 : 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
- Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015 ; 16 : 26087-124. https://doi.org/10.3390/ijms161125942
- Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem. 2012 ; 19 : 4850-60. https://doi.org/10.2174/092986712803341520
- Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K. Progression of alcoholic and non-alcoholic steatohepatitis: Common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet. 2011 ; 26 : 30-46. https://doi.org/10.2133/dmpk.DMPK-10-RV-087
- Li A N, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients. 2014 ; 6 : 6020-47. https://doi.org/10.3390/nu6126020
- Cho AR, Kim DG, Kang JR, Kang MJ, Shin JH. Antioxidant and liver protective activity of combined extracts of medicinal herbs. J Korean Soc Food Sci Nutr. 2019 ; 48 : 1195-204. https://doi.org/10.3746/jkfn.2019.48.11.1195
- Lee SH, Lee MS. The study of physiological and antimicrobial activities on the Citrus Junos extracts with its textures and skin. Journal of the Korea Academia-Industrial cooperation Society. 2017 ; 18 : 67-74. https://doi.org/10.5762/KAIS.2017.18.4.67
- Ham I, Jung ED, Lee K, Lee JH, Bu Y, Kim H, et al. Analysis of the content of hesperidin and essential oils from the peels of various Citrus species. Kor J Herbology. 2008 ; 23 : 159-70.
- Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001 ; 15 : 655-69. https://doi.org/10.1002/ptr.1074
- Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015 ; 124 : 64-74. https://doi.org/10.1016/j.lfs.2014.12.030
- Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015 ; 29 : 323-31. https://doi.org/10.1002/ptr.5256
- Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin--a mini-review. Life Sci. 2014 ; 113 : 1-6. https://doi.org/10.1016/j.lfs.2014.07.029
- Ferreira de Oliveira J, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: cell cycle regulation and apoptosis induction in cancer models. Phytomedicine. 2020 ; 73 : 152887. https://doi.org/10.1016/j.phymed.2019.152887
- Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct. 2020 ; 38 : 419-27. https://doi.org/10.1002/cbf.3478
- Kim HY, Li L, Cho EJ. Antioxidative effects of hesperidin and hesperetin under in vitro. Cancer Prev Res. 2010; 15 : 333-9.
- Cho EJ, Li L, Yamabe N, Kim HY. A ntioxidative effects of hesperidin and hesperetin under cellular system. Korean J Agric Sci. 2011; 38 : 717-22. https://doi.org/10.7744/CNUJAS.2011.38.4.717
- Wan J, Kuang G, Zhang L, Jiang R, Chen Y, He Z, et al. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression. Int Immunopharmacol. 2020 ; 83 : 106435. https://doi.org/10.1016/j.intimp.2020.106435
- Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, et al. Hesperidin ameliorates liver ischemia/reperfusion injury via activation of the Akt pathway. Mol Med Rep. 2020 ; 22 : 4519-30. https://doi.org/10.3892/mmr.2020.11561
- Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978 ; 86 : 271-8. https://doi.org/10.1016/0003-2697(78)90342-1
- Hevel JM, Marletta MA. Nitric-oxide synthase assays. Meth Enzymol. 1994 ; 233 : 250-8. https://doi.org/10.1016/S0076-6879(94)33028-X
- Hugo A. Catalase in vitro. Meth Enzymol. 1984 ; 105 : 121-6. https://doi.org/10.1016/S0076-6879(84)05016-3
- Terao K, Niki E. Damage to biological tissues induced by radical initiator 2,2'-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. J Free Radic Biol Med. 1986 ; 2 : 193-201. https://doi.org/10.1016/S0748-5514(86)80070-8
- Han KH, Jeon YJ, Athukorala Y, Choi KD, Kim CJ, Cho JK, et al. A water extract of Artemisia capillaris prevents 2,2'-azobis(2-amidinopropane) dihydrochloride-induced liver damage in rats. J Med Food. 2006 ; 9 : 342-7. https://doi.org/10.1089/jmf.2006.9.342
- Thapa BR, Walia A. Liver function tests and their interpretation. Indian J Pediatr. 2007 ; 74 : 663-71. https://doi.org/10.1007/s12098-007-0118-7
- Giannini E, Botta F, Fasoli A , Ceppa P, Risso D, Lantieri PB, et al. Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig Dis Sci. 1999 ; 44 : 1249-53. https://doi.org/10.1023/A:1026609231094
- Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006 ; 391 : 499-510. https://doi.org/10.1007/s00423-006-0073-1
- Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017 ; 524 : 13-30. https://doi.org/10.1016/j.ab.2016.10.021
- Kim JH, Li L, Kim MS, Cho EJ, Kim HY. Protective effects of hesperidin and hesperetin on kidney toxicity by regulation of antioxidant activity in AAPH-induced rats. J Agri Life Sci. 2022 ; 56 : 111-6. https://doi.org/10.14397/jals.2022.56.1.111
- Galla HJ. Nitric oxide, NO, an intercellular messenger. Angew Chem Int Ed. 1993 ; 32 : 378-80. https://doi.org/10.1002/anie.199303781
- Papi S, Ahmadizar F, Hasanvand A. The role of nitric oxide in inflammation and oxidative stress. Immunopathol Persa. 2019 ; 5 : e08. https://doi.org/10.15171/ipp.2019.08
- Mates JM, Perez-Gomez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999 ; 32 : 595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
- Kaushal J, Mehandia S, Singh G, Raina A, Arya SK. Catalase enzyme: application in bioremediation and food industry. Biocatal Agric Biotechnol. 2018 ; 16 : 192-9. https://doi.org/10.1016/j.bcab.2018.07.035
- Zhang X, Yu Y, Lei H, Cai Y, Shen J, Zhu P, et al. The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases. Cardiol Res Pract. 2020 ; 2020 : 5695723.
- Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct. 2020 ; 38 : 419-27. https://doi.org/10.1002/cbf.3478
- Park HK, Kang SW, Park MS. Hesperidin ameliorates hepatic ischemia-reperfusion injury in sprague-dawley rats. Transplant Proc. 2019 ; 51 : 2828-32. https://doi.org/10.1016/j.transproceed.2019.02.059
- Li J, Wang T, Liu P, Yang F, Wang W, Zheng W, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021 ; 12 : 3898-918. https://doi.org/10.1039/D0FO02736G
- Heo SD, Kim J, Choi Y, Ekanayake P, Ahn M, Shin T. Hesperidin improves motor disability in rat spinal cord injury through anti-inflammatory and antioxidant mechanism via Nrf-2/HO-1 pathway. Neurosci Lett. 2020 ; 715 : 134619. https://doi.org/10.1016/j.neulet.2019.134619
- Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009 ; 1 : a001651. https://doi.org/10.1101/cshperspect.a001651
- Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κ B signaling in health and disease. Trends Mol Med. 2016 ; 22 : 414-29. https://doi.org/10.1016/j.molmed.2016.03.002
- Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med Res Rev. 2020 ; 40 : 158-89. https://doi.org/10.1002/med.21599