DOI QR코드

DOI QR Code

Hesperidin and Hesperetin Protect against Oxidative Stress on Hepatic Toxicity in Rats

Hesperidin과 Hesperetin의 간 손상 동물모델에서 산화적 스트레스에 대한 간 보호 효과

  • Kim, Ji Hyun (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Li, Li (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Mi Suk (Department of Food Science, Gyeongsang National University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Hyun Young (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Choi, Jine Shang (Department of Food Science and Technology, Gyeongsang National University)
  • 김지현 (경상국립대학교 식품영양학과) ;
  • 이여 (부산대학교 식품영양학과) ;
  • 김미숙 (경상국립대학교 식품과학과) ;
  • 조은주 (부산대학교 식품영양학과) ;
  • 김현영 (경상국립대학교 식품영양학과) ;
  • 최진상 (경상국립대학교 식품공학과)
  • Received : 2022.04.26
  • Accepted : 2022.06.08
  • Published : 2022.06.30

Abstract

Objectives: To investigate the protective effect of hesperidin and hesperetin against oxidative stress in 2,2'-azobis (2-aminopropane) dihydrochloride (AAPH)-induced liver toxicity in rats. Methods: Hesperidin or hesperetin (200 mg/kg/day, respectively) was orally administered for 7 days once daily in rats. Subsequently, AAPH (50 mg/kg/day) was administered intraperitoneally. Lipid peroxidation, nitric oxide production, catalase activity, and protein expressions of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in the liver tissues were measured. Results: Administration of hesperidin and hesperetin significantly decreased serum aspartate transaminase and alanine transaminase levels in AAPH-induced oxidative stress liver tissues compared with control group. Lipid peroxidation and nitric oxide (NO) production were also significantly reduced by hesperidin and hesperetin in AAPH-induced oxidative stress liver tissues. In particular, lipid peroxidation levels of hesperetin-administered group significantly decreased to 5.02 nmole/mg protein in oxidative stress rats. Hesperidin and hesperetin significantly increased antioxidant activity, such as that of catalase. Furthermore, administration of hesperidin and hesperetin substantially down-regulated the expression of NF-κB and iNOS in liver tissues. Administration of hesperidin reduced NO levels and iNOS expression more than in the hesperetin-administered group. Conclusions: Administration of hesperidin and hesperetin led to a reduction in AAPH-induced liver toxicity by regulating oxidative stress.

Keywords

References

  1. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004 ; 55 : 373-99. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  2. Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015 ; 5 : 472-84. https://doi.org/10.3390/biom5020472
  3. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007 ; 39 : 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  4. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015 ; 16 : 26087-124. https://doi.org/10.3390/ijms161125942
  5. Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem. 2012 ; 19 : 4850-60. https://doi.org/10.2174/092986712803341520
  6. Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K. Progression of alcoholic and non-alcoholic steatohepatitis: Common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet. 2011 ; 26 : 30-46. https://doi.org/10.2133/dmpk.DMPK-10-RV-087
  7. Li A N, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients. 2014 ; 6 : 6020-47. https://doi.org/10.3390/nu6126020
  8. Cho AR, Kim DG, Kang JR, Kang MJ, Shin JH. Antioxidant and liver protective activity of combined extracts of medicinal herbs. J Korean Soc Food Sci Nutr. 2019 ; 48 : 1195-204. https://doi.org/10.3746/jkfn.2019.48.11.1195
  9. Lee SH, Lee MS. The study of physiological and antimicrobial activities on the Citrus Junos extracts with its textures and skin. Journal of the Korea Academia-Industrial cooperation Society. 2017 ; 18 : 67-74. https://doi.org/10.5762/KAIS.2017.18.4.67
  10. Ham I, Jung ED, Lee K, Lee JH, Bu Y, Kim H, et al. Analysis of the content of hesperidin and essential oils from the peels of various Citrus species. Kor J Herbology. 2008 ; 23 : 159-70.
  11. Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001 ; 15 : 655-69. https://doi.org/10.1002/ptr.1074
  12. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015 ; 124 : 64-74. https://doi.org/10.1016/j.lfs.2014.12.030
  13. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015 ; 29 : 323-31. https://doi.org/10.1002/ptr.5256
  14. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin--a mini-review. Life Sci. 2014 ; 113 : 1-6. https://doi.org/10.1016/j.lfs.2014.07.029
  15. Ferreira de Oliveira J, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: cell cycle regulation and apoptosis induction in cancer models. Phytomedicine. 2020 ; 73 : 152887. https://doi.org/10.1016/j.phymed.2019.152887
  16. Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct. 2020 ; 38 : 419-27. https://doi.org/10.1002/cbf.3478
  17. Kim HY, Li L, Cho EJ. Antioxidative effects of hesperidin and hesperetin under in vitro. Cancer Prev Res. 2010; 15 : 333-9.
  18. Cho EJ, Li L, Yamabe N, Kim HY. A ntioxidative effects of hesperidin and hesperetin under cellular system. Korean J Agric Sci. 2011; 38 : 717-22. https://doi.org/10.7744/CNUJAS.2011.38.4.717
  19. Wan J, Kuang G, Zhang L, Jiang R, Chen Y, He Z, et al. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression. Int Immunopharmacol. 2020 ; 83 : 106435. https://doi.org/10.1016/j.intimp.2020.106435
  20. Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, et al. Hesperidin ameliorates liver ischemia/reperfusion injury via activation of the Akt pathway. Mol Med Rep. 2020 ; 22 : 4519-30. https://doi.org/10.3892/mmr.2020.11561
  21. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978 ; 86 : 271-8. https://doi.org/10.1016/0003-2697(78)90342-1
  22. Hevel JM, Marletta MA. Nitric-oxide synthase assays. Meth Enzymol. 1994 ; 233 : 250-8. https://doi.org/10.1016/S0076-6879(94)33028-X
  23. Hugo A. Catalase in vitro. Meth Enzymol. 1984 ; 105 : 121-6. https://doi.org/10.1016/S0076-6879(84)05016-3
  24. Terao K, Niki E. Damage to biological tissues induced by radical initiator 2,2'-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. J Free Radic Biol Med. 1986 ; 2 : 193-201. https://doi.org/10.1016/S0748-5514(86)80070-8
  25. Han KH, Jeon YJ, Athukorala Y, Choi KD, Kim CJ, Cho JK, et al. A water extract of Artemisia capillaris prevents 2,2'-azobis(2-amidinopropane) dihydrochloride-induced liver damage in rats. J Med Food. 2006 ; 9 : 342-7. https://doi.org/10.1089/jmf.2006.9.342
  26. Thapa BR, Walia A. Liver function tests and their interpretation. Indian J Pediatr. 2007 ; 74 : 663-71. https://doi.org/10.1007/s12098-007-0118-7
  27. Giannini E, Botta F, Fasoli A , Ceppa P, Risso D, Lantieri PB, et al. Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig Dis Sci. 1999 ; 44 : 1249-53. https://doi.org/10.1023/A:1026609231094
  28. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006 ; 391 : 499-510. https://doi.org/10.1007/s00423-006-0073-1
  29. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017 ; 524 : 13-30. https://doi.org/10.1016/j.ab.2016.10.021
  30. Kim JH, Li L, Kim MS, Cho EJ, Kim HY. Protective effects of hesperidin and hesperetin on kidney toxicity by regulation of antioxidant activity in AAPH-induced rats. J Agri Life Sci. 2022 ; 56 : 111-6. https://doi.org/10.14397/jals.2022.56.1.111
  31. Galla HJ. Nitric oxide, NO, an intercellular messenger. Angew Chem Int Ed. 1993 ; 32 : 378-80. https://doi.org/10.1002/anie.199303781
  32. Papi S, Ahmadizar F, Hasanvand A. The role of nitric oxide in inflammation and oxidative stress. Immunopathol Persa. 2019 ; 5 : e08. https://doi.org/10.15171/ipp.2019.08
  33. Mates JM, Perez-Gomez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999 ; 32 : 595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  34. Kaushal J, Mehandia S, Singh G, Raina A, Arya SK. Catalase enzyme: application in bioremediation and food industry. Biocatal Agric Biotechnol. 2018 ; 16 : 192-9. https://doi.org/10.1016/j.bcab.2018.07.035
  35. Zhang X, Yu Y, Lei H, Cai Y, Shen J, Zhu P, et al. The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases. Cardiol Res Pract. 2020 ; 2020 : 5695723.
  36. Dhanya R, Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem Funct. 2020 ; 38 : 419-27. https://doi.org/10.1002/cbf.3478
  37. Park HK, Kang SW, Park MS. Hesperidin ameliorates hepatic ischemia-reperfusion injury in sprague-dawley rats. Transplant Proc. 2019 ; 51 : 2828-32. https://doi.org/10.1016/j.transproceed.2019.02.059
  38. Li J, Wang T, Liu P, Yang F, Wang W, Zheng W, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021 ; 12 : 3898-918. https://doi.org/10.1039/D0FO02736G
  39. Heo SD, Kim J, Choi Y, Ekanayake P, Ahn M, Shin T. Hesperidin improves motor disability in rat spinal cord injury through anti-inflammatory and antioxidant mechanism via Nrf-2/HO-1 pathway. Neurosci Lett. 2020 ; 715 : 134619. https://doi.org/10.1016/j.neulet.2019.134619
  40. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009 ; 1 : a001651. https://doi.org/10.1101/cshperspect.a001651
  41. Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κ B signaling in health and disease. Trends Mol Med. 2016 ; 22 : 414-29. https://doi.org/10.1016/j.molmed.2016.03.002
  42. Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med Res Rev. 2020 ; 40 : 158-89. https://doi.org/10.1002/med.21599