• Title/Summary/Keyword: Catabolic

Search Result 166, Processing Time 0.026 seconds

Cytochemical Observation of Volutin Granules and Activities of Tripolyphosphatase and Polyphosphatase in Saccharomyces uvarum (효모 세포의 Tripolyphosphatase와 Polyphosphatase 활성도 및 Volutin 과립의 세포학적 관찰)

  • Lee, Ki-Sung;Choi, Yong-Keel
    • The Korean Journal of Mycology
    • /
    • v.13 no.3
    • /
    • pp.141-148
    • /
    • 1985
  • To investigate cellular regulation of phosphate metabolism between catabolically repressed and derepressed states in Saccharomyces uvarum, the activities of polyphosphatases, the analysis of polyphosphate and cytochemical observation of volutin granules were examined according to the culture phase and under various phosphate concentrations. As the results, tripolyphosphatase activity was increased more than six-fold during catabolic repression as compared with those of catabolic derepression and the polyphosphatase activity increased at the time of maximal accumulation of acid insoluble polyphosphate 'B'. Of the low molecular weight polyphosphates, tripolyphosphate was mainly detected by thin layer chromatography. When the synthesis of volutin granules in derepressed cells was observed cytochemically, acid insoluble polyphosphate localizing at the cell wall was primarily synthesized and then transferred into the cytoplasm, nucleus and/or vacuole.

  • PDF

Studies on the Changes in Activities of ALPase, ACPase, ATPase and Synthesis of Volutin Granules upon Phosphate Concentration in Saccharomyces uvarum (Saccharomyces uvarum의 인삼염첨가배양에 따른 ALPase, ACPase, ATPase 활성도와 volutin과립의 함량변화)

  • 이기성;최영길
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.84-89
    • /
    • 1985
  • The effect of exogenous phosphate supply on the regulation of phosphate metabolism was investegated during catabolic repression and catabolic derepression in yeast (Saccharomyces uvarum). As the results, when sugar was supplimented in cells cultivated under phosphate free, the growith rate was low but it was capable of cell division. Polyphosphate "B" was accumulated highly in proportion to amount of phosphate added to the medium. Without regard to phosphate supply of the medium, the total amount of polyphospgate was almost similar, although each polyphosphate was turned over. Activities of all phosphatases remained continuousoy high in the cells cultivated in the phosphate free medium. Especially under catabolic repression, the function of polyphosphate system was shown to compensate the ATP/ADP system as phosphate donor, energy source and regulator.

  • PDF

Studies on the activities of ALPase, ACPase, ATPase and accumulation of volutin granules upon growth phase in saccharomyces uvarum (Saccharomyces uvarum의 배양시기에 따른 ALPase, ACPase, ATPase 활성도와 volutin과립 축적량)

  • 이기성;최영길
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.90-100
    • /
    • 1985
  • The present study was designed to investigate cellular regulation of phosphate metabolism between catabolically repressed and derepressed states in yeast (Saccharomyces uvarum). The activities of various phospatases and the contents of phosphate compounds were detected according to the culture phase and various phosphate concentrations. As the results, Saccharomyces uvarum derepressed many phosphate metabolizing enzymes such as alkaline phosphatase, acid phosphatase and ATPase more than ten fold simultaneously during catabolic repression (phospgate and sugar starvation). At the same state, the amounts of orthophosphate, nucleotidic labile phosphate and acid soluble polypgosphate were increased, compared to basal levels of normally cultivated cells. $Mg^{++}-stimulated$ type among all phospatases was appeared to have most of the enzyme activity. It could be postulated that $K^+ -stimulated$ alkaline phosphatase was directly or indirectly correlated with the synthesis of acid insoluble polyphosphate $Mg^{++}-stimulated$ phosphatase with the degradation of polyphosphates. In case of cultivation in the medium supplemented with sugar and phosphate (catabolic derepression), phospgatase activities except for alkaline phosphatase were decreased rapidly through the progressive batch culture, After 12 hrs culture, at early exponential phase, the cellular accumulation of acid insoluble polyphosphate increased about 5 fold, compared to those of the starved cells. Under catabolic repression, it could be postulated that intracellular phosphate metabolism was regulated by derepressions of phosphatases. The function of polyphosphate system was shown to compensate the ATP/ADP system as phosphate donor and energy source especially during catabolic repression.

  • PDF

FAD-independent and Herbicide-resistant Mutants of Tobacco Acetohydroxy Acid Synthase

  • Le, Dung Tien;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.916-920
    • /
    • 2005
  • Acetohydroxy acid synthase catalyzes the first common step in the biosynthesis of branched chain amino acids. AHAS plays two distinct metabolic roles, and is designated as anabolic AHAS and catabolic AHAS, depending on its function. Anabolic AHAS is FAD-dependent, while its catabolic counterpart is not. In this work, a conserved motif was identified in the $\beta$-domain of anabolic AHASs, but not in catabolic AHAS ($_{372}RFDDR_{376}$). In order to determine the functions of this motif, we replaced the motif with the corresponding sequence in FAD-independent AHAS, SPVEY. None of these three mutants (SPV, SPVE, and SPVEY) was detected with bound FAD. However, two of these mutants (SPVE and SPVEY) were active at a low level of specific activity. Although they exhibited pyruvate- and ThDP- dependent characteristics, the activity of the two active mutants appears to be FAD-independent. The SPVEY mutant was completely insensitive to the three tested herbicides, even at extremely high concentrations and is also somewhat more thermolabile than the wild type enzyme. The data provided in this work suggest that the RFDDR motif is a possible determinant of the FAD-dependent and herbicide-resistant properties of tobacco AHAS. The SPVEY mutant appears to exhibit catabolic AHAS-like activity.

Catabolic Pathway of Lignin Derived-Aromatic Compounds by Whole Cell of Phanerochaete chrysosporium (ATCC 20696) With Reducing Agent

  • Hong, Chang-Young;Kim, Seon-Hong;Park, Se-Yeong;Choi, June-Ho;Cho, Seong-Min;Kim, Myungkil;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.168-181
    • /
    • 2017
  • Whole cell of Phanerochaete chrysosporium with reducing agent was applied to verify the degradation mechanism of aromatic compounds derived from lignin precisely. Unlike the free-reducing agent experiment, various degraded products of aromatic compounds were detected under the fungal treatment. Our results suggested that demethoxylation, $C_{\alpha}$ oxidation and ring cleavage of aromatic compounds occurred under the catabolic system of P. chrysosporium. After that, degraded products stimulated the primary metabolism of fungus, so succinic acid was ultimately main degradation product of lignin derived-aromatic compounds. Especially, hydroquinone was detected as final intermediate in the degradation of aromatics and production of succinic acid. In conclusions, P. chrysosporium has an unique catabolic metabolism related to the production of succinic acid from lignin derived-aromatic compounds, which was meaningful in terms of lignin valorization.

Catabolic Degradation of 4-Chlorobiphenyl by Pseudomonas sp. DJ-12 via Consecutive Reaction of meta-Cleavage and Hydrolytic Dechlorination

  • Chae, Jong-Chan;Kim, Eunheui;Park, Sang-Ho;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.449-455
    • /
    • 2000
  • Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of the meta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-cleavage of protocatechuate. The pcbC gene responsible for the meta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that of Pseudomonas sp. CBS3, yet only a 50% homology with that of Arthrobacter spp. However, the fcb genes for the hydrolytic dechlorination of 4CBA in Pseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBA completely via meta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.

  • PDF

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Nucleotide Activation of Catabolic Threonine Dehydratase from Serratia marcescens (뉴클레오타이드에 의한 Serratia marcescens Catabolic Threonine Dehydratase의 활성화)

  • Choi, Byung-Bum
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • The catabolic threonine dehydratase from Serratia marcescens ATCC 25419 was purified to homogeniety using Sephadex G-200 gel filtration and AMP-Sepharose 4B affinity chromatography. The molecular weight of the native enzyme was 120,000 by native pore gradient PAGE. The enzyme was composed of four identical subunits with subunit molecular weights of 30,000 by SDS-PAGE. The Km values of the enzyme for L-threonine with and without AMP were 7.3 and 92 mM, respectively. There were 2 moles of pyridoxal phosphate and 16 moles of free -SH groups per 1 mole of enzyme. The enzyme was inhibited by $\alpha$-ketobutyrate, pyruvate, glyoxylate, and phosphoenol pyruvate(PEP) in the presence of AMP, yet stimulated by cAMP and ADP. For enzyme properties in comparison with S. marcescens, E. coli, and S. typhimurium enzyme, such as the PLP content, number of free sulfhydryl groups, and existence of ADP binding site, the S. marcescens enzyme was more similar to the S. typhimurium enzyme than the E. coli enzyme. Of the three enteric bacteria, the E. coli and S. typhimurium enzyme was increased the activity by ADP and cAMP, respectively, but only the S. marcescens enzyme was increased the activity by both ADP and cAMP. Therefore, the subtle differences in the properties between enzymes from the three enteric bacteria may represent minor structural differences among these enzymes and warrants further study.

Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling

  • Piao, Weilan;Han, Su-Hyun;Sakuraba, Yasuhito;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.773-786
    • /
    • 2017
  • The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. The Chl catabolic enzyme 7-hydroxymethyl Chl a reductase (HCAR) converts 7-hydroxymethyl Chl a (7-HMC a) to Chl a. The rice (Oryza sativa) genome contains a single HCAR homolog (OsHCAR), but its exact role remains unknown. Here, we show that an oshcar knockout mutant exhibits persistent green leaves during both dark-induced and natural senescence, and accumulates 7-HMC a and pheophorbide a (Pheo a) in green leaf blades. Interestingly, both rice and Arabidopsis hcar mutants exhibit severe cell death at the vegetative stage; this cell death largely occurs in a light intensity-dependent manner. In addition, 7-HMC a treatment led to the generation of singlet oxygen ($^1O_2$) in Arabidopsis and rice protoplasts in the light. Under herbicide-induced oxidative stress conditions, leaf necrosis was more severe in hcar plants than in wild type, and HCAR-overexpressing plants were more tolerant to reactive oxygen species than wild type. Therefore, in addition to functioning in the conversion of 7-HMC a to Chl a in senescent leaves, HCAR may play a critical role in protecting plants from high light-induced damage by preventing the accumulation of 7-HMC a and Pheo a in developing and mature leaves at the vegetative stage.

Proteomic Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) Degradation and Detoxification in Sphingobium chungbukense DJ77

  • Lee, Soo Youn;Sekhon, Simranjeet Singh;Ban, Yeon-Hee;Ahn, Ji-Young;Ko, Jung Ho;Lee, Lyon;Kim, Sang Yong;Kim, Young-Chang;Kim, Yang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1943-1950
    • /
    • 2016
  • Polycyclic aromatic hydrocarbons (PAHs) are commonly present xenobiotics in natural and contaminated soils. We studied three (phenanthrene, naphthalene, and biphenyl) xenobiotics, catabolism, and associated proteins in Sphingobium chungbukense DJ77 by two-dimensional gel electrophoresis (2-DE) analysis. Comparative analysis of the growth-dependent 2-DE results revealed that the intensity of 10 protein spots changed identically upon exposure to the three xenobiotics. Among the upregulated proteins, five protein spots, which were putative dehydrogenase, dioxygenase, and hydrolase and involved in the catabolic pathway of xenobiotic degradation, were induced. Identification of these major multifunctional proteins allowed us to map the multiple catabolic pathway for phenanthrene, naphthalene, and biphenyl degradation. A part of the initial diverse catabolism was converged into the catechol degradation branch. Detection of intermediates from 2,3-dihydroxy-biphenyl degradation to pyruvate and acetyl-CoA production by LC/MS analysis showed that ring-cleavage products of PAHs entered the tricarboxylic acid cycle, and were mineralized in S. chungbukense DJ77. These results suggest that S. chungbukense DJ77 completely degrades a broad range of PAHs via a multiple catabolic pathway.