DOI QR코드

DOI QR Code

Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling

  • Piao, Weilan (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Han, Su-Hyun (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Sakuraba, Yasuhito (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2017.07.08
  • Accepted : 2017.08.23
  • Published : 2017.10.31

Abstract

The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. The Chl catabolic enzyme 7-hydroxymethyl Chl a reductase (HCAR) converts 7-hydroxymethyl Chl a (7-HMC a) to Chl a. The rice (Oryza sativa) genome contains a single HCAR homolog (OsHCAR), but its exact role remains unknown. Here, we show that an oshcar knockout mutant exhibits persistent green leaves during both dark-induced and natural senescence, and accumulates 7-HMC a and pheophorbide a (Pheo a) in green leaf blades. Interestingly, both rice and Arabidopsis hcar mutants exhibit severe cell death at the vegetative stage; this cell death largely occurs in a light intensity-dependent manner. In addition, 7-HMC a treatment led to the generation of singlet oxygen ($^1O_2$) in Arabidopsis and rice protoplasts in the light. Under herbicide-induced oxidative stress conditions, leaf necrosis was more severe in hcar plants than in wild type, and HCAR-overexpressing plants were more tolerant to reactive oxygen species than wild type. Therefore, in addition to functioning in the conversion of 7-HMC a to Chl a in senescent leaves, HCAR may play a critical role in protecting plants from high light-induced damage by preventing the accumulation of 7-HMC a and Pheo a in developing and mature leaves at the vegetative stage.

Keywords

References

  1. Barry, C.S., McQuinn, R.P., Chung, M.Y., Besuden, A., and Giovannoni, J.J. (2008). Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 147, 179-187. https://doi.org/10.1104/pp.108.118430
  2. Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994). Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77, 551- 563. https://doi.org/10.1016/0092-8674(94)90217-8
  3. Han, S.H., Sakuraba, Y., Koh, H.J., and Paek, N.C. (2012). Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-cis-lycopene and singlet oxygen. Mol. Cells 33, 87-97. https://doi.org/10.1007/s10059-012-2218-0
  4. Horie, Y., Ito, H., Kusaba, M., Tanaka, R., and Tanaka, A. (2009). Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J. Biol. Chem. 284, 17449-17456. https://doi.org/10.1074/jbc.M109.008912
  5. Hortensteiner, S. (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 14, 155-162. https://doi.org/10.1016/j.tplants.2009.01.002
  6. Hortensteiner, S. (2013). Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 82, 505-517. https://doi.org/10.1007/s11103-012-9940-z
  7. Hortensteiner, S., and Krautler, B. (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807, 977-988. https://doi.org/10.1016/j.bbabio.2010.12.007
  8. Ito, H., Yokono, M., Tanaka, R., and Tanaka, A. (2008). Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J. Biol. Chem. 283, 9002-9011. https://doi.org/10.1074/jbc.M708369200
  9. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570. https://doi.org/10.1046/j.1365-313x.2000.00767.x
  10. Jung, S., Lee, H.J., Lee, Y., Kang, K., Kim, Y.S., Grimm, B., and Back, K. (2008). Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Mol, Biol, 67, 535-546, https://doi.org/10.1007/s11103-008-9338-0
  11. Koch, E., and Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2, 437-445. https://doi.org/10.1105/tpc.2.5.437
  12. Kusaba, M., Ito, H., Morita, R., Iida, S., Sato, Y., Fujimoto, M., Kawasaki, S., Tanaka, R., Hirochika, H., Nishimura, M., et al. (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19, 1362-1375. https://doi.org/10.1105/tpc.106.042911
  13. Li, J., Pandeya, D., Nath, K., Zulfugarov, I.S., Yoo, S.C., Zhang, H., Yoo, J.H., Cho, S.H., Koh, H.J., Kim, D.S., et al. (2010). ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J. 62, 713-725. https://doi.org/10.1111/j.1365-313X.2010.04183.x
  14. Li, S., Gao, J., Yao, L., Ren, G., Zhu, X., Gao, S., Qiu, K., Zhou, X., and Kuai, B. (2016). The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence. Plant Cell Rep. 35, 1729-1741. https://doi.org/10.1007/s00299-016-1991-1
  15. Liang, H., Yao, N., Song, J.T., Luo, S., Lu, H., and Greenberg, J.T. (2003). Ceramides modulate programmed cell death in plants. Genes Dev. 17, 2636-2641. https://doi.org/10.1101/gad.1140503
  16. Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., and Chu, C. (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. USA 111, 10013-10018. https://doi.org/10.1073/pnas.1321568111
  17. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  18. Meguro, M., Ito, H., Takabayashi, A., Tanaka, R., and Tanaka, A. (2011). Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23, 3442-3453. https://doi.org/10.1105/tpc.111.089714
  19. Nagata, N., Tanaka, R., Satoh, S., and Tanaka, A. (2005). Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17, 233-240. https://doi.org/10.1105/tpc.104.027276
  20. op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320-2332. https://doi.org/10.1105/tpc.014662
  21. Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Seo, H.S., Koh, H.J., et al. (2007) The senescenceinduced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649-1664. https://doi.org/10.1105/tpc.106.044891
  22. Porra, R.J., Thompson, W.A., and Kriedemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim. Biophys. Acta 975, 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0
  23. Pruzinska, A., Tanner, G., Anders, I., Roca, M., and Hortensteiner, S. (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc, Natl, Acad, Sci, USA 100, 15259-15264. https://doi.org/10.1073/pnas.2036571100
  24. Pruzinska, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Luthi, E., Muller, T., Krautler, B., and Hortensteiner, S. (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19, 369-387. https://doi.org/10.1105/tpc.106.044404
  25. Qiu, K., Li, Z., Yang, Z., Chen, J., Wu, S., Zhu, X., Gao, S., Gao, J., Ren, G., Kuai, B., et al. (2015). EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet. 11, e1005399. https://doi.org/10.1371/journal.pgen.1005399
  26. Ren, G., An, K., Liao, Y., Zhou, X., Cao, Y., Zhao, H., Ge, X., and Kuai, B. (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144, 1429-1441. https://doi.org/10.1104/pp.107.100172
  27. Rong, H., Tang, Y., Zhang, H., Wu, P., Chen, Y., Li, M., Wu, G., and Jiang, H. (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170, 1367-1373. https://doi.org/10.1016/j.jplph.2013.05.016
  28. Sakuraba, Y., Tanaka, R., Yamasato, A., and Tanaka, A. (2009). Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J. Biol. Chem. 284, 36689-36699. https://doi.org/10.1074/jbc.M109.008144
  29. Sakuraba, Y., Yokono, M., Akimoto, S., Tanaka, R., and Tanaka, A. (2010). Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol. 51, 1055- 1065. https://doi.org/10.1093/pcp/pcq050
  30. Sakuraba, Y., Schelbert, S., Park, S.Y., Han, S.H., Lee, B.D., Andres, C.B., Kessler, F., Hörtensteiner, S., and Paek, N.C. (2012). STAYGREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24, 507-518. https://doi.org/10.1105/tpc.111.089474
  31. Sakuraba, Y., Kim, Y.S., Yoo, S.C., Hortensteiner, S., and Paek, N.C. (2013). 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochem. Biophys. Res. Commun. 430, 32-37. https://doi.org/10.1016/j.bbrc.2012.11.050
  32. Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., and Choi, G. (2014a). Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636. https://doi.org/10.1038/ncomms5636
  33. Sakuraba, Y., Kim, D., Kim, Y.S., Hortensteiner, S., and Paek, N.C. (2014b). Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett. 588, 3830-3837. https://doi.org/10.1016/j.febslet.2014.09.018
  34. Sakuraba, Y., Park, S.Y., Kim, Y.S., Wang, S.H., Yoo, S.C., Hortensteiner, S., and Paek, N.C. (2014c). Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol. Plant 7, 1288-1302. https://doi.org/10.1093/mp/ssu045
  35. Sakuraba, Y., Park, S.Y., and Paek, N.C. (2015a) The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. Mol Cells 38, 390-395. https://doi.org/10.14348/molcells.2015.0039
  36. Sakuraba, Y., Piao W., Lim J.H., Han S.H., Kim Y.S., An G., and Paek N.C. (2015b). Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol. 56, 2325-2339. https://doi.org/10.1093/pcp/pcv144
  37. Sakuraba, Y., Han, S.H., Lee, S.H., Hortensteiner, S., and Paek, N.C. (2016). Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. Plant Cell Rep. 35, 155-166. https://doi.org/10.1007/s00299-015-1876-8
  38. Sato, Y., Morita, R., Katsuma, S., Nishimura, M., Tanaka, A., and Kusaba, M. (2009). Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J. 57, 120-131. https://doi.org/10.1111/j.1365-313X.2008.03670.x
  39. Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., and Hörtensteiner, S. (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767-785. https://doi.org/10.1105/tpc.108.064089
  40. Shimoda, Y., Ito, H., and Tanaka, A. (2016). Arabidopsis STAYGREEN, Mendel's green cotyledon gene, encodes magnesiumdechelatase. Palnt Cell 28, 2147-2160. https://doi.org/10.1105/tpc.16.00428
  41. Tang, Y., Li, M., Chen, Y., Wu, P., Wu, G., and Jiang, H. (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168, 1952-1959. https://doi.org/10.1016/j.jplph.2011.05.026
  42. Wang, S.H., Lim, J.H., Kim, S.S., Cho, S.H., Yoo, S.C., Koh, H.J., Sakuraba, Y., and Paek, N.C. (2015) Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. J. Exp. Bot. 66, 7045-7059. https://doi.org/10.1093/jxb/erv401
  43. Wang, X., and Liu, L. (2016) Crystal structure and catalytic mechanism of 7-hydroxymethyl chlorophyll a reductase. J. Biol. Chem. 291, 13349-13359. https://doi.org/10.1074/jbc.M116.720342
  44. Yamasato, A., Nagata, N., Tanaka, R., and Tanaka, A. (2005). The Nterminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis. Plant Cell 17, 1585-1597. https://doi.org/10.1105/tpc.105.031518
  45. Yao, N., and Greenberg, J.T. (2006). Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18, 397- 411. https://doi.org/10.1105/tpc.105.036251
  46. Wu, F.H., Shen, S.C., Lee, L.Y., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich- a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. https://doi.org/10.1186/1746-4811-5-16
  47. Zapata, M., Rodriguez, F., and Garrido, J.L. (2000). Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridinecontaining mobile phases. Mar. Ecol. Prog. Ser. 195, 29-45. https://doi.org/10.3354/meps195029
  48. Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W., and Chua, N.H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641-646. https://doi.org/10.1038/nprot.2006.97

Cited by

  1. Physiological Analysis and Proteome Quantification of Alligator Weed Stems in Response to Potassium Deficiency Stress vol.20, pp.1, 2017, https://doi.org/10.3390/ijms20010221
  2. HCAR Is a Limitation Factor for Chlorophyll Cycle and Chlorophyll b Degradation in Chlorophyll- b -Overproducing Plants vol.10, pp.12, 2020, https://doi.org/10.3390/biom10121639
  3. Recent Advances in Genetic Regulation of Chlorophyll Metabolism in Plants vol.52, pp.4, 2020, https://doi.org/10.9787/kjbs.2020.52.4.281
  4. Expression of BoNOL and BoHCAR genes during postharvest senescence of broccoli heads vol.101, pp.4, 2021, https://doi.org/10.1002/jsfa.10783
  5. Overexpression of 7-hydroxymethyl Chlorophyll a Reductase from Cucumber in Tobacco Accelerates Dark-Induced Chlorophyll Degradation vol.10, pp.9, 2021, https://doi.org/10.3390/plants10091820