Nucleotide Activation of Catabolic Threonine Dehydratase from Serratia marcescens

뉴클레오타이드에 의한 Serratia marcescens Catabolic Threonine Dehydratase의 활성화

  • Choi, Byung-Bum (Dept. of Food and Nutrition, Shinheung College University)
  • Received : 2010.03.31
  • Accepted : 2010.05.03
  • Published : 2010.06.30

Abstract

The catabolic threonine dehydratase from Serratia marcescens ATCC 25419 was purified to homogeniety using Sephadex G-200 gel filtration and AMP-Sepharose 4B affinity chromatography. The molecular weight of the native enzyme was 120,000 by native pore gradient PAGE. The enzyme was composed of four identical subunits with subunit molecular weights of 30,000 by SDS-PAGE. The Km values of the enzyme for L-threonine with and without AMP were 7.3 and 92 mM, respectively. There were 2 moles of pyridoxal phosphate and 16 moles of free -SH groups per 1 mole of enzyme. The enzyme was inhibited by $\alpha$-ketobutyrate, pyruvate, glyoxylate, and phosphoenol pyruvate(PEP) in the presence of AMP, yet stimulated by cAMP and ADP. For enzyme properties in comparison with S. marcescens, E. coli, and S. typhimurium enzyme, such as the PLP content, number of free sulfhydryl groups, and existence of ADP binding site, the S. marcescens enzyme was more similar to the S. typhimurium enzyme than the E. coli enzyme. Of the three enteric bacteria, the E. coli and S. typhimurium enzyme was increased the activity by ADP and cAMP, respectively, but only the S. marcescens enzyme was increased the activity by both ADP and cAMP. Therefore, the subtle differences in the properties between enzymes from the three enteric bacteria may represent minor structural differences among these enzymes and warrants further study.

Serratia marcescens catabolic threonine dehydratase는 streptomycin sulfate treatment, Sephadex G-200 gel filtration, AMP-Sepharose 4B affinity chromatography 등의 방법으로 정제하였는데, 최종 단계에서 회수율은 15.5%이었으며 50배 정제되었다. Native 분자량은 native pore gradient polyacrylamide gel electrophoresis(PAGE) 방법으로는 120,000이었다. SDS-PAGE에 의한 subunit의 분자량은 30,000이었고, 즉 S. marcescens 효소는 4개의 동일한 subunit으로 구성된 homo-tetrameric protein임이 판명되었다. S. marcescens 효소의 L-threonine에 대한 Km값은 AMP가 있는 조건에서 7.3 mM, AMP가 없는 조건에서 92 mM이었다. S. marcescens 효소는 효소 1 mole 당 각각 2 mole의 pyridoxal 5'-phosphate(PLP), 16개의 free-SH group을 가지고 있었다. S. marcescens 효소는 AMP의 존재 하에서 $\alpha$-ketobutyrate, pyruvate, glyoxylate, phosphoenol pyruvate(PEP)에 의해 효소 활성이 억제되었으며, cAMP와 ADP에 의해서는 효소 활성이 증가되었다. 효소학적 성질면에서 S. marcescens 효소는 E. coli 효소보다는 S. typhimurium 효소와 유사하였다. 한편, E. coli 효소는 cAMP에 의하여 효소 활성이 증가되고, S. typhimurium 효소는 ADP에 의해 효소 활성이 증가되는 것과 다르게, S. marcescens 효소는 cAMP와 ADP 모두 효소 활성이 증가되었다. 따라서 이상의 연구 결과들은 세 enteric bacteria의 catabolic threonine dehydratase가 서로 작은 차이점이 있다는 것을 반영하며, 이러한 사실을 규명하기 위해서는 향후 보다 심층적인 연구를 수행하여야 할 것으로 사료된다.

Keywords

References

  1. Bhadra R, Datta P. 1978. Allosteric inhibition and catabolite inactivation of purified biodegradative threonine dehydratase of Salmonella typhimurium. Biochemistry 17:1691-1699
  2. Choi BB, Kim SS, Bang SK. 1996. The regulatory role of Serratia marcescens threonine dehydratase in a isoleucine biosynthesis. Kor J Food & Nutr 9:372-378
  3. Choi BB, Kim SS. 1999. The regulation of branched chain amino acids biosynthesis by Serratia marcescens threonine dehydratase and acetolactate synthase. Food Sci Biotechnol 8:156-161
  4. Choi BB. 2000. Biochemical characterization of biodegradative threonine dehydratase from Serratia marcescens ATCC 25419. Korean Shinheung College 23:139-151
  5. Ellman GL. 1959. Tissue sulfhydryl groups. Archs Biochem Biophys 82:70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  6. Gallagher DT, Chinchilla D, Lau H. 2004. Local and global control mechanisms in allosteric threonine deaminase. Methods in Enzymology 380:85-106 https://doi.org/10.1016/S0076-6879(04)80004-1
  7. Goss TJ, Schweizer HP, Datta P. 1988. Molecular characterization of the tdc operon of Escherichia coli K-12. J Bacteriol 170:5352-5359 https://doi.org/10.1128/jb.170.11.5352-5359.1988
  8. Guillouet S, Rodal AA, An GH, Lessard A, Sinskey AJ. 1999. Expression of the Escherichia coli catobolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100-3107
  9. Hirata M, Tokushige M, Inagaki A, Hayaishi O. 1965. Nucleotide activation of threonine deaminase from Escherichia coli. J Biol Chem 240:1711-1717
  10. Hobert EH, Datta P. 1983. Synthesis of biodegradative threonine dehydratase of Escherichia coli role of amino acids, electron acceptors, and certain intermediary metabolites. J Bacteriol 155:586-592
  11. Kim SS, Datta P. 1982. Chemical characterization of biodegradative threonine dehydratases from two enteric bacteria. Biochim Biophys Acta 706:27-35 https://doi.org/10.1016/0167-4838(82)90371-5
  12. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$. Nature 227:680-685 https://doi.org/10.1038/227680a0
  13. Leoncini R, Vannoni D, Pietro MCD, Guerranti R, Rosi F, Pagani RR, Marinello E. 1998. Restortation of rat liver L-threonine dehydratase activity by pyridoxamine 5'-phosphate: the halftransaminating activity of L-threonine dehydratase and its regulatory role. Biochim Biophys Acta 1425:411-418 https://doi.org/10.1016/S0304-4165(98)00094-4
  14. Lowry OH, Rosenbrough NJ, Farr AL. 1951. Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 193:265-275
  15. Manwell CA. 1977. Simplified electrophretic system for determining molecular weights of proteins. Biochem J 165:487-495 https://doi.org/10.1042/bj1650487
  16. Park LS, Datta P. 1979. Inhibition of Escherichia coli biodegradative threonine dehydratase by pyruvate. J Bacteiol 138:1026-1028
  17. Scarselli M, Padula MG, Bernini A, Piga O, Ciutti A, Leoncini R, Vannoni D, Varnello E, Lcolai N. 2003. Structure and function correlations between the rat liver threonine deaminase and aminotransferases. Biochim Biophys Acta 1645:40-48 https://doi.org/10.1016/S1570-9639(02)00502-2
  18. Schmitz G, Downs DM. 2004. Reduced transaminase B(ilvE) activity caused by the lack of yjgF dependent on the status of threonine deaminase(ilvA) in Salmonella typhimurium. J Bacteriol 186:803-810 https://doi.org/10.1128/JB.186.3.803-810.2004
  19. Shizuta Y, Hayaishi O. 1976. Regulation of biodegradative threonine deaminase. Curr Top Cell Regul 11:99-146
  20. Shizuta Y, Nakazawa A, Tokushige M, Hayaishi O. 1969. Studies on the interaction between regulatory enzymes and effectors. J Biol Chem 244:1883-1889
  21. Shulman A, Zalyapin E, Vyazmensky M. 2008. Allosteric regulation of Bacillus subtilis threonine deaminase, a biosynthetic threonine deaminase with asingle regulatory domain. Biochemistry 47:11783-11792 https://doi.org/10.1021/bi800901n
  22. Simanshu DK, Chittori S, Savithri HS. 2006. Crystallization and preliminary X-ray crystallographic analysis of biodegradative threonine deaminase(TdcB) from Salmonella typhimurium. Acta crystallographica 62:275-278 https://doi.org/10.1107/S1600536806000146
  23. Wada H, Snell EE. 1961. The enzymatic oxidation of pyridoxine and pyridoxamine phosphate. J Biol Chem 236:2089-2095