• Title/Summary/Keyword: Casting pattern

Search Result 174, Processing Time 0.025 seconds

A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device (다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계)

  • Jang, Jeong Hui;Kim, Jun Hyung;Han, Chul Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.

Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms (3차원 직조형 금속복합재료의 제조와 특성분석)

  • 이상관;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

The Tensile Properties and Wear Behavior of Mixing-reinforced Composites by Squeeze Casting Process (혼합강화 복합재료의 인장 및 내마모 특성)

  • Kim, Yong-Hyeon;Lee, Gwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.392-397
    • /
    • 1999
  • The tensile strength and water resistance of ADC12 alloy matrix composites reinforced with saffil/ceraklwool and saffil/Si particle prepared by squeeze casting have been investigated in room temperature and $250^{\circ}C$. Adhesive and scuffing wear phenomena was studied when load was changed to 10~40N and wear velocity was 2.0m/s at room temperature and $250^{\circ}C$. Generally, the morphology of tensile fractured surface revealed dimple pattern which implies ductile fracture of the composites. However, cleavage fracture was also observed in case of ADC12 alloy based saffil/Si particle composite. The maximum tensile strength of 320MPa was obtained in ADC12 alloy based composites reinforced by saffil/cerakwool(5:5) preformed fibers. In the results of dry wear test, it was observed that scuffing was occurred at 40N in room temperature and 30N for $250^{\circ}C$.

  • PDF

Analysis of A356 alloys filling behavior considering Two-Phase flow (Two-Phase Flow를 이용한 A356 합금의 충전거동 해석)

  • Seol, D.E.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • A semi-solid forming technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forging. In this study, the numerical analysis of semi-solid filling has been studied with solid fraction fs = 30% of A356 aluminum alloys. The finite difference program of two-phase flow model of Navier Stokes' equation coupled with heat transfer and solidification has been developed to predict a filling pattern, liquid segregation and temperature distribution of semi-solid metals. It gives die filling patterns and final solidification area. It can predict mechanical properties of semi-solid forming processes.

  • PDF

A Finite Element Modeling on the Fluid Flow and Solidification in a Continuous Casting Process (연속주조공정에서의 유동과 응고에 대한 유한요소 모델링)

  • Kim, Tae-Hun;Kim, Deok-Soo;Choi, Hyung-Chul;Kim, Woo-Seung;Lee, Se-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.820-830
    • /
    • 1999
  • The coupled turbulent flow and solidification is considered in a typical slab continuous easting process using commercial program FIDAP. Standard $k-{\varepsilon}$ turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement.

Optimization of Electrode Pattern for Multilayer Ceramic Heater by Finite Element Method (유한요소법에 의한 적층형 세라믹 히터의 전극 패턴 최적화)

  • Han, Yoonsoo;Kim, Shi Yeon;Yeo, Dong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.776-781
    • /
    • 2017
  • In this study, we investigated the effect of electrode pattern design on the thermal shock resistance and temperature uniformity of a ceramic heater. A cordierite substrate with a low thermal expansion coefficient was fabricated by tape casting, and a tungsten electrode was printed and used as a heating element. The temperature distribution of the ceramic heater was calculated by a finite-element method (FEM) by considering various electrode patterns, and the tensile stress distribution due to the thermal stress was calculated. In the electrode pattern with a single-line width, the central part of the ceramic heater was heated to the maximum temperature, and the position of the ceramic heater having a double-line width was changed to the maximum temperature, depending on the position of the minimum line width pattern. The highest tensile stress was found along the edges of the ceramic heater. The temperature gradient at the edge determined the tensile stress intensity. The smallest tensile stress was observed for electrode pattern D, which was expected to be advantageous in resisting thermal shock failures in ceramic heaters.

A defect inspection method of the IH-JAR by statistical pattern recognition (통계적 패턴인식에 의한 유도가열 솥의 비파괴 불량 검사 방법)

  • Oh, Ki-Tae;Lee, Soon-Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.112-119
    • /
    • 2000
  • A die-casting junction method is usually used to manufacture the tub of an IH(induction heating) jar. If there is a very small air bubble in the junction area, the thermal conductivity is deteriorated and local overheat occurs. Such problem brings serious inferiority of the IH jar. In this paper, we propose a new method to detect such defect with simply measured thermal data. Thermal distribution of preheated tubs is obtained by scanning with infrared thermal sensors and analyzed with the statistic pattern recognition method. By defining the characteristic feature as the temperature difference between sensors and using ellipsoid function as decision boundary, a supervised learning method of genetic algorithm is proposed to obtain the required parpameters. After applying the proposed method to experiment, we have proved that the rate of recognition is high even for a small number of data set.

  • PDF

PEDOT:PSS Thin Films with Different Pattern Structures Prepared Using Colloidal Template

  • Yu, Jung-Hoon;Lee, Jin-Su;Nam, Sang-Hun;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.254-260
    • /
    • 2014
  • Organic solar cells have attracted extensive attention as a promising approach for cost-effective photovoltaic devices. However, organic solar cell has disadvantage of low power conversion efficiency in comparison with other type of solar cell, due to the recombination ratio of hole and electron is too large in the active layer. Thus we have change the surface structure of PEDOT:PSS layers to improve the current density by colloidal lithography method using various-size of polystyrene sphere. The two types of coating method were applied to fabricate the different pattern shape and height, such as spin coating and drop casting. Using the organic solvent, we easily eliminate the PS sphere and could make the varied pattern shapes by controlling the wet etching time. Also we have measured the electrical properties of patterned PEDOT:PSS film to check whether it is suitable for organic photovoltaics.

Development of a Simultaneous CAE System for the Application to Large Steel Castings (대형주강품에 대한 CAE 시스템 개발 연구)

  • Lee, Young-Chul;Lee, Doo-Ho;Kim, Jong-Ki;So, Chan-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.465-471
    • /
    • 1997
  • An integrated computer program consisting of a pre-processor, main solver, and post-processor was developed for the design of large steel castings. The pre-processor, based on the AutoCAD, enables the user to produce approval drawings, casting design drawings and mesh diagrams in sequence using a personal computer. In the main solver, two numerical models were employed; one models the fluid flow during mold filling, and the other models the heat transfer and solidification. The post-processor can be used to present simulation results such as flow pattern, mold filling sequences, solidification times, temperature gradients and location of shrinkage defects by color graphics. In order to validate the applicability of the present integrated program, a series of experiments on simple-shaped steel castings were carried out. After the validation of the present model, it was applied to the casting design of the large steel anchor of an SC42 alloy. Various solidification parameters such as a temperature distribution and a solidification time in the casting and the mold were compared with those obtained experimentally. Simulated results predicting shrinkage defects were in good agreement with those obtained experimentally. It was found that the present method can be successfully applied to the quantitative casting design for complex-shaped large steel castings.

  • PDF

Effect of Evaporative Pattern on the Surface Layer Structures of Carbon Steel and Gray Iron Castings. (소실모형이 탄소강 및 회주철 주물의 표면층 조직에 미치는 영향)

  • Kim, Ji-Youn;Cho, Nam-Don
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.305-316
    • /
    • 1992
  • Steel and iron castings made with expandable polystylene (referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The effects of practical factors on carbon pick-up were investigated on the specimens, by taking successive layers of swarf and analysis, whereas the lustrous carbon is determined by using combustion analysis. The quality of the castings, with particular reference to carbon pick-up in low carbon steel and lustrous carbon on gray iron, is further influenced to a significant extent by such practical factors as reduced pressure, the pouring temperature, the density of EPS pattern, the additive in coating and in pattern and the casting thickness. The rate at which carbon pick-up and lustrous carbon deposites are formed can be reduced by reducing the density of the pattern and also reducing pressure, especially by adding $Na_2CO_3$ in coating and in pattern to promote $CO_2$ evolution. The upper parts of castings obtained using EPS patterns are slightly higher in carbon pick-up and in lustrous carbon than other parts.

  • PDF