DOI QR코드

DOI QR Code

PEDOT:PSS Thin Films with Different Pattern Structures Prepared Using Colloidal Template

  • Yu, Jung-Hoon (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Jin-Su (Department of Chemistry, Sungkyunkwan University) ;
  • Nam, Sang-Hun (Institute of Basic Science, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University)
  • Received : 2014.09.16
  • Accepted : 2014.09.30
  • Published : 2014.09.30

Abstract

Organic solar cells have attracted extensive attention as a promising approach for cost-effective photovoltaic devices. However, organic solar cell has disadvantage of low power conversion efficiency in comparison with other type of solar cell, due to the recombination ratio of hole and electron is too large in the active layer. Thus we have change the surface structure of PEDOT:PSS layers to improve the current density by colloidal lithography method using various-size of polystyrene sphere. The two types of coating method were applied to fabricate the different pattern shape and height, such as spin coating and drop casting. Using the organic solvent, we easily eliminate the PS sphere and could make the varied pattern shapes by controlling the wet etching time. Also we have measured the electrical properties of patterned PEDOT:PSS film to check whether it is suitable for organic photovoltaics.

Keywords

References

  1. A. Facchetti, Chem. Mater. 23, 733 (2011). https://doi.org/10.1021/cm102419z
  2. X. Zhan and D. Zhu, Polym. Chem. 1, 409 (2010). https://doi.org/10.1039/b9py00325h
  3. A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw, Science 270, 972 (1995). https://doi.org/10.1126/science.270.5238.972
  4. A. Dodabalapur, J. Laquindanum, H. E. Katz, and Z. Bao, Appl. Phys. Lett. 69, 4227 (1996). https://doi.org/10.1063/1.116953
  5. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, IEEE T. Electron Dev. 44, 1188 (1997). https://doi.org/10.1109/16.605453
  6. L. G. Alexopoulos, L. A. Setton, and F. Guilak, Acta Biomater. 1, 317 (2005). https://doi.org/10.1016/j.actbio.2005.02.001
  7. T. Aernoutsa, P. Vanlaekea, W. Geensa, J. Poortmansa, P. Heremansa, S. Borghsa, R. Mertensa, R. Andriessenb, and L. Leendersb, Thin Solid Films 451, 22 (2004).
  8. V. G. Khomenko1, V. Z. Barsukov, and A. S. Katashinskii, Electrochim. Acta 50, 1675 (2005). https://doi.org/10.1016/j.electacta.2004.10.024
  9. A. Goetzbergera, C. Heblinga, and H. W. Schock, Mater. Sci. Eng. R 40, 1 (2003). https://doi.org/10.1016/S0927-796X(02)00092-X
  10. J. Muller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004). https://doi.org/10.1016/j.solener.2004.03.015
  11. S. Holdcroft, Adv. Mater. 13, 1753 (2001). https://doi.org/10.1002/1521-4095(200112)13:23<1753::AID-ADMA1753>3.0.CO;2-2
  12. P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, R. H. Friend, and R. W. Gymer, Nature 356, 47 (1992). https://doi.org/10.1038/356047a0
  13. A. Pogantsch, G. Trattnig, G. Langer, W. Kern, U. Scherf, H. Tillmann, H. H. Horhold, and E. Zoier, Adv. Mater. 14, 1722 (2002). https://doi.org/10.1002/1521-4095(20021203)14:23<1722::AID-ADMA1722>3.0.CO;2-7
  14. D. G. Lidzey, M. Voigt, C. Giebeler, A. Buckley, J. Wright, K. Bohlen, J. Fieret, and R. Allott, Org. Electron. 6, 221 (2005). https://doi.org/10.1016/j.orgel.2005.06.007
  15. G. Venugopal, X. Quan, G. E. Johnson, F. M. Houlihan, E. Chin, and O. Nalamasu, Chem. Mater. 7, 271 (1996).
  16. H. J. Salavagione, M. C. Miras, and C. Barbero, Macromol. Rapid Comm. 27, 26 (2006). https://doi.org/10.1002/marc.200500653
  17. A. F. Lasagni, J. L. Hendricks, C. M. Shaw, D. Yuan, D. C. Martin, and S. Das, Appl. Surf. Sci. 255, 9186 (2009). https://doi.org/10.1016/j.apsusc.2009.06.130
  18. L. M?ller-Meskamp, Y. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, Adv. Mater. 24, 906 (2012). https://doi.org/10.1002/adma.201104331
  19. Y. Yang, K. Lee, K. Mielczarek, W. Hu1, and A. Zakhidov, Nanotechnology 22, 485301 (2011). https://doi.org/10.1088/0957-4484/22/48/485301
  20. W. Y. Chou, J. Chang, C. T. Yen, F. C. Tang, H. L. Cheng, M. H. Chang, S. L. C. Hsu, J. S. Chen, and Y. Lee, Appl. Phys. Lett. 99, 183108 (2011). https://doi.org/10.1063/1.3659471
  21. J. B. Emah, R. J. Curry, and S. R. P. Silva, Appl. Phys. Lett. 93, 103301 (2008). https://doi.org/10.1063/1.2973342
  22. R. Meier, C. Birkenstock, C. M. Palumbiny, and P. M. Buschbaum, Phys. Chem. Chem. Phys. 14, 15088 (2012). https://doi.org/10.1039/c2cp42918g
  23. S. Na, S. Kim, J. Jo, S. Oh, J. Kim, and D. Kim, Adv. Funct. Mater. 18, 3956 (2008). https://doi.org/10.1002/adfm.200800683
  24. K. S. Nalwa, J. Park, K. M. Ho, and S. Chaudhary, Adv. Mater. 23, 112 (2011). https://doi.org/10.1002/adma.201002898
  25. H. Y. Wei, Y. S. Hsiao, J. H. Huang, C. Y. Hsu, F. C. Chang, P. Chen, K. C. Ho, and C. W. Chu, RSC Adv. 2, 4746 (2012). https://doi.org/10.1039/c2ra00005a
  26. H. Y. Wei, Y. S. Hsiao, J. H. Huang, C. Y. Hsu, F. C. Chang, P. Chen, K. C. Ho, and C. W. Chu, Energ. Environ. Sci. 6, 1192 (2013). https://doi.org/10.1039/c3ee24128a
  27. X. Du and J. He, J. Appl. Polym. Sci. 108, 1755 (2008). https://doi.org/10.1002/app.27774
  28. S. M. Weekes, F. Y. Ogrin, W. A. Murray, and P. S. Keatley, Langmuir 23, 1057 (2007). https://doi.org/10.1021/la061396g
  29. R. M. Howden, E. J. Flores, V. Bulovic, and K. K. Gleason, Org. Electron. 14, 2257 (2013). https://doi.org/10.1016/j.orgel.2013.05.004