• 제목/요약/키워드: Caspase 1

검색결과 1,285건 처리시간 0.031초

Cisplatin에 의한 뇌세포사멸에서 보중면역단의 방어효과 (Protective Effects of Bojungmyunyuk-dan in Cisplatin Treated Brain Cell Death)

  • 유경태;문석재;원진희;김동웅;이종덕;원경숙;문구
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.394-402
    • /
    • 2003
  • This study was designed to investigate the protective effect of Bojungmyunyuk-dan(BJMY-Dan) on the cisplatin-induced cytotoxicity of primary rat astrocytes. BJMY-Dan is an oriental herbal prescription for its ability to recover protective effects against anti-cancer chemotherapies. After astrocytes were treated cisplatin, MTT assay was performed for cell viability test. To explore the mechanism of cytotoxicity, I used the several measures of apoptosis to determine whether this processes was involved in cisplatin-induced cell damage in astrocytes. Also, astrocytes were treated with BJMY-Dan and then, followed by the addition of cisplatin. Cisplatin decreased the viability of astrocytes in a dose and time-dependent manner. BJMY-Dan increased the viability of astrocytes treated cisplatin. Astrocytes treated cisplatin were revealed as apoptosis characterized by nuclear staining and flow cytometry. BJMY-Dan protected astrocytes from cisplatin-induced nuclear fragmentation and chromatin condensation. Also, caspase-3 and caspase-9 proteases were activated in astrocytes by cisplatin. BJMY-Dan inhibited the activation of caspase proteases in cisplatin-treated astrocytes. Cleavage of [poly(ADP-ribose) polymerase](PARP) was occurred at 12hr after treatment of cisplatin in astrocytes. BJMY-Dan recovered the cleavage of PARP in cisplatin-treated astrocytes. Also, BJMY-Dan inhibited the activation of pro-apoptotic factor, Bak by cisplatin. Lastly, astrocytes stained with JC-1 and Rhodamine 123 were photographed by fluorescence microscope to visualize changes of mitochondrial membrane permeability transition(MPT) during treatment with cisplatin for 24hr. BJMY-Dan recovered the change of MPT by cisplatin in astrocytes. According to above results, BJMY-Dan may protect astrocytes from cytotoxicity induced by chemotherapeutic agents, including cisplatin.

꼬시래기 산추출물의 primary 인체 전립선 암세포 증식억제 효과 (Anti-proliferative Effects of Acid Extract of Gracilaria Verrucosa on Primary Human Prostate Cancer Cells)

  • 홍성민;조현동;김정호;이주혜;송우시;이성태;이미경;서권일
    • 생명과학회지
    • /
    • 제26권10호
    • /
    • pp.1130-1136
    • /
    • 2016
  • 본 연구에서는 꼬시래기 산추출물(acid extraction of Gracilaria verrucosa, AEG)을 이용하여 RC-58T/h/SA#4 primary 인체 전립선 암세포에 대한 증식억제 및 apoptosis 유도효과를 밝히고자 하였다. AEG의 처리는 전립선 암세포에서 24시간에서 농도 의존적으로 증식 억제능을 보이는 반면 정상세포에서는 독성을 나타내지 않아 암세포의 증식만을 선택적으로 억제시킴을 확인할 수 있었다. 또한 RC-58T/h/SA#4 세포에서 AEG의 처리는 apoptotic body 형성 및 핵의 형태 변화를 유도하였으며, anti-apoptotic 인자인 Bcl-2 단백질은 감소시키고 pro-apoptotic 인자인 Bax 단백질은 증가시키는 것으로 나타났다. Apoptosis의 유발과 관련된 주요인자인 caspase-3 단백질의 발현은 대조구와 비교하여 AEG를 처리한 군에서 caspase-3의 발현을 농도 의존적으로 증가시키는 것으로 나타났다. 한편, bisphenol A에 의해 비정상적으로 증식된 전립선 암세포에서 AEG의 처리는 유의적인 전립선암세포 성장억제효능을 나타내었다. 본 연구에서는 AEG가 RC-58T/h/SA#4 전립선암 세포에서 암세포 성장억제효과 및 apoptosis 유도효과를 나타낸다는 것을 확인하였으며, 환경호르몬에 의해 증식된 암에 대해서도 성장을 억제할 수 있는 효능을 가지고 있음을 증명하였다.

인체 방광암 T24 세포에서 Glycyrrhizae radix 열수추출물에 의한 apoptosis 유도 (Induction of apoptosis by water extract Glycyrrhizae radix in human bladder T24 cancer cells)

  • 엄정혜;황병수;정용태;김민진;신수영;김철환;이승영;최경민;조표연;정진우;오영택
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.111-111
    • /
    • 2019
  • Glycyrrhizae radix is one of the most frequently prescribed ingredients in Oriental medicine, and G. radix extract has been shown to exert anti-cancer effects. However, the cellular and molecular mechanisms of apoptosis by G. radix are poorly defined. In the present study, it was examined the biochemical mechanisms of apoptosis by water extract of G. radix (WEGR) in human bladder T24 cancer cells. It was found that WEGR could inhibit the cell growth of T24 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, DNA fragmentation and increased populations of annexin-V positive cells. The induction of apoptotic cell death by WEGR was connected with an up-regulation of pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins, and inhibition of apoptosis family proteins (XIAP, cIAP-1 and cIAP-2). In addition, apoptosis-inducing concentrations of WEGR induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. WEGR also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the down-regulation of total Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that WEGR may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

  • PDF

Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage

  • Song, Juhyun;Jun, Mira;Ahn, Mok-Ryeon;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • 제10권4호
    • /
    • pp.377-384
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Resveratrol, a natural polyphenol, has multiple functions in cellular responses including apoptosis, survival, and differentiation. It also participates in the regulation of inflammatory response and oxidative stress. MicroRNA-Let-7A (miR-Let7A), known as a tumor suppressor miRNA, was recently reported to play a crucial role in both inflammation and apoptosis. Therefore, we examined involvement of miR-Let7A in the modulation of inflammation and cell survival/apoptosis regulated by resveratrol. MATERIALS/METHODS: mRNA expression of pro-/anti-inflammatory cytokines and sirtuin 1 (SIRT1), and protein expression of apoptosis signal-regulating kinase 1 (ASK1), p-ASK1, and caspase-3 and cleaved caspase-3 were measured, and cell viability and Hoechst/PI staining for apoptosis were observed in Lipopolysaccharide (LPS)-stimulated human THP-1 macrophages with the treatment of resveratrol and/or miR-Let7A overexpression. RESULTS: Pre-treatment with resveratrol ($25-200{\mu}M$) resulted in significant recovery of the reduced cell viabilities under LPS-induced inflammatory condition and in markedly increased expression of miR-Let7A in non-stimulated or LPS-stimulated cells. Increased mRNA levels of tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6 induced by LPS were significantly attenuated, and decreased levels of IL-10 and brain-derived neurotrophic factor were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. Decreased expression of IL-4 mRNA by LPS stimulation was also significantly increased by miR-Let7A overexpression co-treated with resveratrol. In addition, decreased SIRT1 mRNA levels, and increased p-ASK1 levels and PI-positive cells by LPS stimulation were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. CONCLUSIONS: miR-Let7A may be involved in the inflammatory response and cell survival/apoptosis modulated by resveratrol in human THP-1 macrophages.

New Therapeutic Schedule for Prostatic Cancer-3 Cells with ET-1 RNAi and Endostar

  • Zhang, Hao-Jie;Qian, Wei-Qing;Chen, Ran;Sun, Zhong-Quan;Song, Jian-Da;Sheng, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10079-10083
    • /
    • 2015
  • Background: Endothelin-1 and Endostar are both significant for the progression, proliferation, metastasis and invasion of cancer. In this paper, we studied the effect of ET-1 RNAi and Endostar in PC-3 prostatic cancer cells. Materials and Methods: The lentiviral vector was used in the establishment of ET-1 knockdown PC-3 cells. Progression and apoptosis were assessed by CKK-8 and flow cytometry, respectively. Transwell assay was used to estimate invasion and signaling pathways were studied by Western blotting. Results: ET-1 mRNA and protein in ET-1 knockdown PC-3 cells were reduced to 26.4% and 22.4% compared with control group, respectively. ET-1 RNAi and Endostar both were effective for the suppression of progression and invasion of PC-3 cells. From Western blotting results, the effects of ET-1 regulation and Endostar on PC-3 cells were at least related to some signaling pathways involving PI3K/Akt/Caspase-3, Erk1/2/Bcl-2/Caspase-3 and MMPs (MMP-2 and MMP-9). Furthermore, combined treatment of ET-1RNAi and Endostar was found to be more effective than single treatment. Conclusions: Both ET-1 RNAi and Endostar can inhibit the progression and invasion of PC-3 cells, but combined treatment might be a better therapeutic schedule.

호중구의 자연 세포사멸 및 세포사멸 지연에 대한 Brefeldin A의 영향 (Effects of brefeldin A on spontaneous and delayed apoptosis of human neutrophils)

  • 김재석;이민정;이창민;이상화;배외식;곽종영
    • 생명과학회지
    • /
    • 제12권4호
    • /
    • pp.452-459
    • /
    • 2002
  • 호중의 세포사멸은 자연적으로 일어나지만 여러 자극에 의한 신호에 의하여 증가하거나 지연된다. 본 연구에서는 세포 내 단백질 분비과정을 억제한다고 알려진 BFA가 호중구의 자연 세포사멸 및 세포사멸 지연에 어떠한 기작으로 작용하는가를 연구하였다. 호중구의 세포사멸은 사람 말초 혈액으로부터 분리하여 세포 배양 20시간 후 형태 변화, annexin V and propidium iodide의 염색, 및 DNA 전기영동 등으로 조사하였다. BFA는 농도 의존형으로 호중구의 세포사멸을 증가시킨다. CM-CSF나 LPS에 의한 세포사멸의 지연도 BFA에 의하여 억제되었다. 그러나 BFA의 영향은 db-cAMP, dexamethasone, 및 IL-8을 처리한 세포에서는 큰 영향을 받지 않았다. PKC-5의 억제제인 rottlerin에 의한 세포사멸의 지연은 BFA에 의하여 감소하였다. 그러나 BFA에 의한 세포사멸의 유도는 caspase-3 억제제인 zDEVD-fmk에 의하여는 영향을 받지 않았다. 한편, 세포사멸 억제에 관여하는 Mcl-1 단백질의 발현은 BFA의 처리에 의하여 감소하였다. 이들 결과들은 세포 내 단백질 분비 과정의 억제가 호중구의 세포사멸에 관여하며 이들의 작용은 Mcl-1 발현의 조절에 의한다는 것을 제시하고 있다.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Production of IL-1β and Inflammasome with Up-Regulated Expressions of NOD-Like Receptor Related Genes in Toxoplasma gondii-Infected THP-1 Macrophages

  • Chu, Jia-Qi;Shi, Ge;Fan, Yi-Ming;Choi, In-Wook;Cha, Guang-Ho;Zhou, Yu;Lee, Young-Ha;Quan, Juan-Hua
    • Parasites, Hosts and Diseases
    • /
    • 제54권6호
    • /
    • pp.711-717
    • /
    • 2016
  • Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines, which are important for innate immunity. NLRs, i.e., nucleotide-binding oligomerization domain (NOD)-like receptors, play a crucial role as innate immune sensors and form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of $pro-IL-1{\beta}$. To elucidate the role of inflammasome components in T. gondiiinfected THP-1 macrophages, we examined inflammasome-related gene expression and mechanisms of inflammasome-regulated cytokine $IL-1{\beta}$ secretion. The results revealed a significant upregulation of $IL-1{\beta}$ after T. gondii infection. T. gondii infection also upregulated the expression of inflammasome sensors, including NLRP1, NLRP3, NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and NAIP, in a time-dependent manner. The infection also upregulated inflammasome adaptor protein ASC and caspase-1 mRNA levels. From this study, we newly found that T. gondii infection regulates NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and neuronal apoptosis inhibitor protein (NAIP) gene expressions in THP-1 macrophages and that the role of the inflammasome-related genes may be critical for mediating the innate immune responses to T. gondii infection.

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

3T3-L1 지방전구세포에 대한 다양한 주파수 진동의 지방 생성 억제 효과 (Anti-adipogenic Effects of Vibration with Varied Frequencies on 3T3-L1 Preadipocytes)

  • 이영훈;이석호;정혜빈;정용찬;김민환;이은미;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권1호
    • /
    • pp.18-24
    • /
    • 2021
  • Vibration is a mechanical cue that can be applied to adipose tissues for the purpose of treating obesity. However, the exact correlation between vibration and other anti-adipogenic pathways, such as development of cytoskeleton and apoptosis, remains unknown. The objective of this study was to investigate the unknown anti-adipogenic effects of vibration with varied frequencies on preadipocytes. 3T3-L1 preadipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 5% calf serum at 37 ℃ with 5% CO2 in a humidified incubator. Vibration was generated using Arduino Uno microcontroller and vibration motor module with 1 V DC, and applied to preadipocytes for 3 days. Frequency conditions were set to 20, 55, and 90 Hz. Then, the expressions of p38 pathway, ROCK-1, α-actinin, Bax, Bcl-2, caspase-9, 8, and 3 were analyzed with western blot. As a result, p38 pathway was inhibited in 55 and 90 Hz while ROCK-1 and α-actinin were expressed in 20 Hz. Caspase-3, a terminal apoptotic factor, was activated in 20 Hz via extrinsic pathway rather than intrinsic pathway. Results suggest that various frequencies of vibration can inhibit adipogenesis via different pathways which sheds light on future mechanotransduction applications of vibration for the treatment of obesity.