References
- Siegel RL, Miller KD, Jemal A. 2016. Cancer statistics. CA Cancer J. Clin. 66: 7-30. https://doi.org/10.3322/caac.21332
- Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. 2007. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol. 608: 1-22.
- Schopf FH, Biebl MM, Buchner J. 2017. The Hsp90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18: 345-360. https://doi.org/10.1038/nrm.2017.20
- Sankhala KK, Mita MM, Mita AC, Takimoto CH. 2011. Heat shock proteins: a potential anticancer target. Curr. Drug Targets 12: 2001-2008. https://doi.org/10.2174/138945011798829339
- Sausville EA, Tomaszewski JE, Ivy P. 2003. Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr. Cancer Drug Targets 3: 377-383. https://doi.org/10.2174/1568009033481831
- Fukuyo Y, Hunt CR, Horikoshi N. 2010. Geldanamycin and its anti-cancer activities. Cancer Lett. 290: 24-35. https://doi.org/10.1016/j.canlet.2009.07.010
- Zhao Q, Wu CZ, Lee JK, Zhao SR, Li HM, Huo Q, et al. 2014. Anticancer effects of the Hsp90 inhibitor 17-demethoxy-reblastatin in human breast cancer MDA-MB-231 cells. J. Microbiol. Biotechnol. 24: 914-920. https://doi.org/10.4014/jmb.1311.11052
- Zhang Z, Li HM, Zhou C, Li Q, Ma L, Zhang Z, et al. 2016. Non-benzoquinone geldanamycin analogs trigger various forms of death in human breast cancer cells. J. Exp. Clin. Cancer Res. 35: 149. https://doi.org/10.1186/s13046-016-0428-6
- Kim W, Lee JS, Lee D, Cai XF, Shin JC, Lee K, et al. 2007. Mutasynthesis of geldanamycin by the disruption of a gene producing starter unit: generation of structural diversity at the benzoquinone ring. Chembiochem 8: 1491-1494. https://doi.org/10.1002/cbic.200700196
- Jang WJ, Jung SK, Kang JS, Jeong JW, Bae MK, Joo SH, et al. 2014. Anti-tumor activity of WK88-1, a novel geldanamycin derivative, in gefitinib-resistant non-small cell lung cancers with Met amplification. Cancer Sci. 105: 1245-1253. https://doi.org/10.1111/cas.12497
- Hong YS, Jang WJ, Chun KS, Jeong CH. 2014. Hsp90 inhibition by WK88-1 potently suppresses the growth of geftinib-resistant H1975 cells harboring the T790M mutation in EGFR. Oncol. Rep. 31: 2619-2624. https://doi.org/10.3892/or.2014.3161
- Lee J, Shen P, Zhang G, Wu X, Zhang X. 2013. Dihydroartemisinin inhibits the Bcr/Abl oncogene at the mRNA level in chronic myeloid leukemia sensitive or resistant to imatinib. Biomed. Pharmacother. 67: 157-163. https://doi.org/10.1016/j.biopha.2012.10.017
- Feng W, Cai D, Zhang B, Lou G, Zou X. 2015. Combination of HDAC inhibitors TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother. 74: 257-264. https://doi.org/10.1016/j.biopha.2015.08.017
- Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495-516. https://doi.org/10.1080/01926230701320337
-
Hsieh SC, Hsieh WJ, Chiang AN, Su NW, Yeh YT, Liao YC. 2016. The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the
$NF-{\kappa}B$ signaling pathway. Food Funct. 7: 4797-4803. https://doi.org/10.1039/C6FO01202G - Wani ZA, Guru SK, Rao AV, Sharma S, Mahajan G, Behl A, et al. 2016. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem. Toxicol. 87: 1-11. https://doi.org/10.1016/j.fct.2015.11.016
-
Baichwal VR, Baeuerle PA. 1997. Activate
$NF-{\kappa}B$ or die? Curr. Biol. 7: 94-96. https://doi.org/10.1016/S0959-440X(97)80012-7 -
Itoh N, Semba S, Ito M, Takeda H, Kawata S, Yamakawa M. 2002. Phosphorylation of
$Akt/P{\kappa}B$ is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 94: 3127-3134. https://doi.org/10.1002/cncr.10591 - Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281: 1309-1312. https://doi.org/10.1126/science.281.5381.1309
- Ying J, Xu HD, Wu X. 2015. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathway. Int. J. Clin. Exp. Pathol. 8: 12837-12844.
- Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
- Warburg OH. 2010. The classic: the chemical constitution of respiration ferment. Clin. Orthop. Relat. Res. 468: 2833-2839. https://doi.org/10.1007/s11999-010-1534-y
- Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, et al. 2011. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem. Res. Toxicol. 24: 20-29. https://doi.org/10.1021/tx100248s
-
Chiu CH, Chou YC, Lin JP, Kuo CL, Lu HF, Huang YP, et al. 2015. Chloroform extract of Solanum lyratum induced
$G_0/G_1$ arrest via p21/p16 and induced apoptosis via reactive oxygen species, caspases and mitochondrial pathways in human oral cancer cell lines. Am. J. Chin. Med. 43: 1453-1469. https://doi.org/10.1142/S0192415X15500822 - Kong GM, Tao WH, Diao YL, Fang PH, Wang JJ, Bo P, et al. 2016. Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J. Gastroenterol. 22: 3186-3195. https://doi.org/10.3748/wjg.v22.i11.3186
- Cohen GM. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326: 1-16. https://doi.org/10.1042/bj3260001
- Shao FY, Du ZY, Ma DL, Chen WB, Fu WY, Ruan BB, et al. 2015. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy. Oncotarget 6: 30939-30956.
-
Huang YC, Kuo CL, Lu KW, Lin JJ, Yang JL, Wu RS, et al. 2016.
$18\alpha$ -Glycyrrhetinic acid induces apoptosis of HL-60 human leukemia cells through caspases- and mitochondria-dependent signaling pathways. Molecules 21: 872. https://doi.org/10.3390/molecules21070872 - Wang S, He M, Li L, Liang Z, Zou Z, Tao A. 2016. Cell-in-cell death is not restricted by caspase-3 defciency in MCF-7 cells. J. Breast Cancer 19: 231-241. https://doi.org/10.4048/jbc.2016.19.3.231
Cited by
- Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest vol.30, pp.2, 2020, https://doi.org/10.4014/jmb.1909.09059