• 제목/요약/키워드: Case deletions

검색결과 33건 처리시간 0.02초

Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases

  • Kim, Sewoon;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.8-16
    • /
    • 2019
  • Mutations in the ${\beta}-catenin$ gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated ${\beta}-catenin$ in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, in-frame deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the ${\beta}-catenin$ protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant ${\beta}-catenin$ proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.

Direct Deletion Analysis in Two Duchenne Muscular Dystrophy Symptomatic Females Using Polymorphic Dinucleotide (CA)n Loci within the Dystrophin Gene

  • Giliberto, Florencia;Ferreiro, Veronica;Dalamon, Viviana;Surace, Ezequiel;Cotignola, Javier;Esperante, Sebastian;Borelina, Daniel;Baranzini, Sergio;Szijan, Irene
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.179-184
    • /
    • 2003
  • Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease. It is inherited manifestations. In some rare cases, the disease can also be manifested in females. The aim of the present study was to determine the molecular alteration in two cases of nonrelated DMD symptomatic carriers with no previous history of DMD. Multiplex PCR is commonly used to search for deletion in the DMD gene of affected males. This method could not be used in females because the normal X chromosome masks the deletion of the mutated one. Therefor, we used a set of seven highly polymorphic dinucleotide $(CA)_n$ repeat markers that lie within the human dystrophin gene. The deletions were evidenced by hemizygosity of the loci under study. We localized a deletion in the locus 7A (intron 7) on the maternal X chromosome in one case, and a deletion in the region of introns 49 and 50 on the paternal X chromosome in the other. The use of microsatellite genotyping within the DMD gene enables the detection of the mutant allele in female carriers. It is also a useful method to provide DMD families with more accurate genetic counseling.

A case of Mowat-Wilson syndrome with developmental delays and Hirschsprung's disease

  • Lee, Darae;Kim, Ja Hye;Cho, Ja Hyang;Oh, Moon-Yun;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제11권2호
    • /
    • pp.79-82
    • /
    • 2014
  • Mowat-Wilson syndrome is an extremely rare genetic disease that is characterized by intellectual disability, facial dysmorphism, Hirschsprung's disease, and other congenital anomalies. This disorder is caused by heterozygous mutations or deletions in the zinc finger E-box-binding homeobox-2 gene (ZEB2). Thus far, approximately 200 cases of Mowat-Wilson syndrome have been reported worldwide. In Korea, only one case with a 2q22 deletion, which also affects ZEB2, has been previously reported. Here, we describe a patient with Mowat-Wilson syndrome who presented with developmental delays, typical facial dysmorphism, and Hirschsprung's disease. Molecular analysis of ZEB2 identified a novel heterozygous mutation at c.190dup ($p.S64Kfs^*6$). To our knowledge, this is the second report of a Korean patient with Mowat-Wilson syndrome that has been confirmed genetically.

A novel MLL2 gene mutation in a Korean patient with Kabuki syndrome

  • Kim, Soo Jin;Cho, Sung Yoon;Maeng, Se Hyun;Sohn, Young Bae;Kim, Su-Jin;Ki, Chang-Seok;Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • 제56권8호
    • /
    • pp.355-358
    • /
    • 2013
  • Kabuki syndrome (KS) is a rare genetic disease with a distinctive dysmorphic face, intellectual disability, and multiple congenital abnormalities. KS is inherited in an autosomal dominant manner. As the primary cause of KS, MLL2 mutations have been identified in 56-76% of affected individuals who have been tested, suggesting that there may be additional genes associated with KS. Recently, a few KS individuals have been found to have de novo partial or complete deletions of an X chromosome gene, KDM6A, which encodes a histone demethylase that interacts with MLL2. Nevertheless, mutations in MLL2 are the major cause of KS. Although there are a few reports of KS patients in Korea, none of these had been confirmed by genetic analysis. Here, we report a case of a Korean patient with clinical features of KS. Using direct sequencing, we identified a frameshift heterozygous mutation for MLL2 : (c.5256_5257delGA;p.Lys1753Alafs$^*34$). Clinically, the patient presented with typical facial features, and diagnosis of KS was based on the diagnostic criteria. While KS is a rare disease, other malformations that overlap with those found in individuals with KS are common. Hence, the diagnosis of KS by mutational analysis can be a valuable method for patients with KS-like syndromes. Furthermore, in the near future, other genes could be identified in patients with KS without a detectable MLL2 mutation.

Genetic alterations in Wnt family of genes and their putative association with head and neck squamous cell carcinoma

  • Aditya, Jain;Smiline Girija, A.S.;Paramasivam, A.;Priyadharsini, J. Vijayashree
    • Genomics & Informatics
    • /
    • 제19권1호
    • /
    • pp.5.1-5.11
    • /
    • 2021
  • Head and neck squamous cell carcinoma (HNSCC) is the most frequent type of head and neck cancer that usually arises from the mucosal surfaces of several organs including nasal cavity, paranasal sinuses, oral cavity, tongue, pharynx, and larynx. The Wnt signaling pathway is a crucial mechanism for cellular maintenance and development. It regulates cell cycle progression, apoptosis, proliferation, migration, and differentiation. Dysregulation of this pathway correlates with oncogenesis in various tissues including breast, colon, pancreatic as well as head and neck cancers. The present study aims to assess the gene alterations in the Wnt family of genes so as to derive an association with HNSCC. Computational approaches have been utilized for the identification of gene alterations in the Wnt family of genes. Several databases such as cBioportal, STRING, and UALCAN were used for the purpose. The frequency of alteration was high in case of Wnt family member 11 (5%). Gene amplification, deep deletions, missense and truncating mutations were observed in HNSCC patients. There was a marked difference in the gene expression profile of WNT11 between grades as well as normal samples. The survival probability measured using the Kaplan-Meier curve also presented with a significant difference among male and female subjects experiencing a low/medium level expression. The female patients showed less survival probability when compared to the male subjects. This provides the prognostic significance of the WNT11 gene in HNSCC. Taken together, the present study provides clues on the possible association of WNT11 gene alterations with HNSCC, which has to be further validated using experimental approaches.

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • 제54권2호
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

Prenatal diagnosis of the spinal muscular atrophy type I using genetic information from archival slides and paraffin-embedded tissues

  • Choi, Soo-Kyung;Cho, Eun-Hee;Kim, Jin-Woo;Park, So-Yeon;Kim, Young-Mi;Ryu, Hyun-Mee;Kang, Inn-Soo;Jun, Jung-Young;Chi, Je-G.
    • Journal of Genetic Medicine
    • /
    • 제2권2호
    • /
    • pp.53-57
    • /
    • 1998
  • Spinal muscular atrophy (SMA) type I is a common severe autosomal recessive inherited neuromuscular disorder that has been mapped to chromosome 5q11.2-13.3. The survival motor neuron (SMN) gene, a candidate gene, is known to be deleted in 96% of patients with SMA type I. Presently, PCR and single strand conformation polymorphism (PCR-SSCP) analyses have been made possible for application to both archival slides and paraffin-embedded tissues. Archival materials represent valuable DNA resources for genetic diagnosis. We applied these methods for the identification of SMN gene of SMA type I in archival specimens for the prenatal diagnosis. In this study, we performed the prenatal diagnosis with chorionic villus sampling (CVS) cells on two women who had experienced neonatal death of SMA type I. DNA extraction was done from archival slide and tissue materials and PEP-PCR was performed using CVS cells. In order to identify common deletion region of SMN and neuronal apoptosis-inhibitory protein (NAIP) genes, cold PCR-SSCP and PCR-restriction site assay were carried out. Case 1 had deletions of the exons 7 and 8, and case 2 had exon 7 only on the telomeric SMN gene. Both cases were found to be normal on NAIP gene. These results were the same for both CVS and archival biopsied specimens. In both cases, the fetuses were, therefore, predicted to be at very high risk of being affected and the pregnancy were terminated. These data clearly demonstrate that archival slide and paraffin-embedded tissues can be a valuable source of DNA when the prenatal genetic diagnosis is needed in case any source for genetic analysis is not readily available due to previous death of the fetus or neonate.

  • PDF

울프-허쉬호른 증후군(Wolf-Hirschhorn syndrome) 환자의 전신마취 하 치과치료 : 증례보고 (DENTAL TREATMENT FOR A PATIENT WITH WOLF-HIRSCHHORN SYNDROME UNDER GENERAL ANESTHESIA: CASE REPORT)

  • 유지연;송지수;신터전;현홍근;김정욱;장기택;이상훈;김영재
    • 대한장애인치과학회지
    • /
    • 제15권1호
    • /
    • pp.65-69
    • /
    • 2019
  • 본 증례는 유치열에 다수의 치아 우식증을 주소로 내원한 울프-허쉬호른 증후군 환자의 전신마취 하 치과치료에 대한 보고이다. WHS 환자의 특징적인 안모가 관찰되었으며, 발달지연, 정신 지체, 식이 장애 및 이로 인한 합병증 등을 보였다. WHS 환자는 다양한 전신 질환 및 선천성 기형 등을 동반할 수 있으므로, 치과 치료 시 전신적인 상태에 대한 평가가 필요하다. 또한 WHS 환자의 전신마취 시에는 기도 관리와 관련한 특별한 주의가 필요하며 치과 치료 후에도 주기적 관찰 및 지속적인 구강위생 관리 교육이 필요하다.

KOSPI 200지수종목의 변경에 따른 시장반응 : 규모와 시장요인에 따른 그룹간 비교분석 (The Market Effect of Additions or Deletions for KOSPI 200 Index : Comparison between Groups by Size and Market Condition)

  • 박영석;이재현;김대식
    • 재무관리연구
    • /
    • 제26권1호
    • /
    • pp.65-94
    • /
    • 2009
  • 본 연구는 KOSPI 200주가지수의 구성종목 변경 사건에 대한 시장반응을 재검증하는 데 초점을 두었다. 국내에서 두 차례 이루어진 과거 실증연구들에서는 KOSPI 200지수종목의 변경이 정보력이 없는 사건으로 분석되었으며, 일부 표본에 대해서만 가격압박가설을 지지하는 것으로 나타났다. 본 연구는 이러한 실증적 결과가 변경기업의 속성과 주식시장의 장세에 따라 다르게 나타날 수 있다고 판단하여 기업규모와 시장상황에 따라서 샘플을 구분하여 분석하였다. 실증분석의 결과 지수종목에 신규로 포함되는 기업의 경우 평균적으로 가격압박가설을 지지하는 것으로 나타났다. 또한 종목들을 기업규모와 시장상황에 따라 나누어서 분석해보면 주가반응이 크게 나타났던 년도의 표본수가 많지 않았기 때문에 시장의 평균적 반응을 살펴보면 정보력이 없거나 가격압박가설을 지지하는 것처럼 나타난 것으로 분석되었다. 이러한 연구결과는 거래량분석을 통해서도 지지되었는데, 시가총액이 큰 기업은 공시일 전에 새로운 지수종목으로 진입될 것을 예상되기 때문에 공시일 이전에 거래량이 크게 증가하는 것으로 나타났다. 그러나 지수종목에서 탈락되는 기업의 경우에서는 장기적인 주가반응이 뚜렷하게 나타났지만 거래량에 의한 추가적 설명은 부족한 것으로 분석되었다.

  • PDF

사람의 O-linked N-acetyl-$\beta$-D-glucosaminidase 유전자의 분석과 재조합 발현 (Analysis of Human O-GlcNAcase Gene and the Expression of the Recombinant Gene.)

  • 강대욱;서현효
    • 미생물학회지
    • /
    • 제40권2호
    • /
    • pp.87-93
    • /
    • 2004
  • 세포질과 핵단백질의 serine과 threonine 잔기에 O-linked N-acetyl-$\beta$-glucosamine (O-GlcNAc)의 첨가는고등 진핵 세포에서 흔히 일어나는 번역 후 단백질의 변형 중 하나로서 단백질의 인산화와 유사한 세포 내 신호전달에 관여하는 것으로 보인다. O-GlcNAc의 첨가와 제거는 O-GlcNAc transferase (OGT)와 O-linked N-acetyl-$\beta$-D-glucos-aminidase (O-GlcNAcase) 효소에 의해 각각 촉매된다. 두가지 종류의 사람 유래 O-GlcNAcase 유전자(O-GlcNAcase, v-O-GlcNAcase)를cloning하고 세 가지의 융합단백질로 대장균에서 생산을 시도하였다. O-GlcNAcase의 기질 유사체 인 ${\rho}$-nitrophenyl-N-acetyl-$\beta$-D-g1ucosaminide (${\rho}$NP-$\beta$-D-GlcNAc)를 기질로 사용하여 효소활성을 측정 한 결과 v-O-GlcNAcase는 활성을 나타내지 않았다. 여러 종류의 amino sugar 기질 유사체를 사용하여 O-GlcNAcase의 활성을 측정하였으나 오직 ${\rho}$NP-$\beta$-D-GlcNAc만이 활성을 보였다. Blast검색으로 분석한 결과 아미노 말단의 hyaluronidase-like domain (hyaluronidase-유사 영역)과 카르복시 말단의 N-acetyltransferase 영역 두 곳의 conserved domains 존재하였다. 효소촉매에 중요한 영역을 밝히기 위해 여러 deletion mutants(결손 변이체)를 제작한 후 효소활성을 측정하고 Western blot으로 분석하였다. Hyaluronidas-유사 영역, 유전자 내부와 N-acetyltransferase 영역을 제거할 경우 효소활성이 사라졌으나 아미노 말단의 55개 아미노산과 카르복시 말단의 truncation은 활성을 일부분 유지하였다. 위의 사실에 기초하여 hyaluronidas-유사 영역은 효소활성에 중요하고 카르복시 말단의 N-acetyltransferase 영역은 조절기능으로 작용하는 것으로 추정된다.