• 제목/요약/키워드: Cartesian coordinate

Search Result 216, Processing Time 0.025 seconds

Cartesian Coordinate Control of Robot Motion (로보트 운동에 대한 공간 좌표 제어)

  • 노영식;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot (2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향)

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space (직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

A practical adaptive tracking filter for a maneuvering target (시선좌표계에서의 분리추적필터를 이용한 개선된 입력추정기법)

  • 성태경;황익호;이장규;이양원;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.424-429
    • /
    • 1992
  • A practical adaptive tracking filter for a maneuvering target is proposed in this paper by combining a modified input estimation technique with pseudo-residuals and a decoupled tracking filter in line-of-sight Cartesian coordinate system. Since the adaptive tracking filter has decoupled structure and computes maneuver input estimates for each axis separately, it requires much less computations compared with the coventional tracking filter with MIE technique without degrading performance. Also, since pseudo-measurement noises in line-of-sight Cartesian coordinate system are much less correlated compared with those of inertial Cartesian coordinate system, the proposed tracking filter produces less false alarms or miss detections to improve the performance.

  • PDF

A Study on the Camera Calibration Algorithm of Robot Vision Using Cartesian Coordinates

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.98-104
    • /
    • 2002
  • In this study, we have developed an algorithm by attaching a camera at the end-effector of industrial six-axis robot in order to determine position and orientation of the camera system from cartesian coordinates. Cartesian coordinate as a starting point to evaluate for suggested algorithm, it was easy to confront increase of orientation vector for a linear line point that connects two points from coordinate space applied by recursive least square method which includes previous data result and new data result according to increase of image point. Therefore, when the camera attached to the end-effector has been applied to production location, with a calibration mask that has more than eight points arranged, this simulation approved that it is possible to determine position and orientation of cartesian coordinates of camera system even without a special measuring equipment.

Image processing in a discrete polar coordinate system based on L1-norm (L1-norm 기반 이산 극좌표에서의 영상처리)

  • John, Min-Su;Lee, Nam-Koo;Kim, Won-Ha;Kim, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.20-28
    • /
    • 2008
  • We propose a radial image processing method in a discrete polar coordinate system based on L1-norm. For this purpose, we first verified that the polar coordinate based on L2-norm can not exist in discrete system and then develop a method converting the Cartesian coordinate to the discrete polar coordinate. We apply the proposed method to smooth mass images of breast tissue and to detect the boundaries of extremely deformable objects. Compared to the Gaussian smoothing method performed in the Cartesian coordinate system, the proposed method stabilized the image signal while maintaining the overall radial shape of mass images. The proposed boundary detection method can detect shapes with high precision while conventional edge detectors can not accurately detect the shape of deformable objects. We also exploit the method to perform pupil detection and have had good experimental results.

ON POLAR TAXICAB GEOMETRY IN A PLANE

  • Park, Hyun Gyu;Kim, Kyung Rok;Ko, Il Seog;Kim, Byung Hak
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.783-790
    • /
    • 2014
  • Most distance functions, including taxicab distance, are defined on Cartesian plane, and recent studies on distance functions have been mainly focused on Cartesian plane. However, most streets in cities include not only straight lines but also curves. Therefore, there is a significant need for a distance function to be defined on a curvilinear coordinate system. In this paper, we define a new function named polar taxicab distance, using polar coordinates. We prove that this function satisfies the conditions of distance function. We also investigate the geometric properties and classifications of circles in the plane with polar taxicab distance.

Integrating History of Mathematics in Teaching Cartesian Coordinate Plane: A Lesson Study

  • MENDOZA, Jay-R M.;ALEGARIO, Joan Marie T.;BLANCO, Miguel G.;De TORRES, Reynold;IGAY, Roselyn B.;ELIPANE, Levi E.
    • Research in Mathematical Education
    • /
    • v.20 no.1
    • /
    • pp.39-49
    • /
    • 2016
  • The History of Mathematics (HOM) was integrated in teaching the Cartesian Coordinate Plane (CCP) to Grade Seven learners of Moonwalk National High School using Lesson Study. After the lesson was taught, there were three valuable issues emerged: (1) HOM is a Springboard and/or a Medium of Motivation in Teaching CCP; (2) The History of CCP Opened a Wider Perspective about Its Real-life Application in the Modern World (3) Integration of History Developed a Sense of Purpose and an Appreciation of Mathematics Among Learners. Feedbacks solicited from the learners showed that they have understanding of the importance of studying Mathematics after they learned the life and contributions of Rene Descartes to Mathematics. Hence, integration of history plays a vital role in developing positive attitudes among learners towards Math.

A Study on the Choice of Dependent Variables of Momentum Equations in the General Curvilinear Coordinate (일반곡률좌표계 운동량방정식의 종속변수 선정에 관한 연구)

  • Kim, Tak-Su;Kim, Won-Gap;Kim, Cheol-Su;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1500-1508
    • /
    • 2001
  • This paper represents the importance of dependent variables in non-orthogonal curvilinear coordinates just as the importance of those variables of convective scheme and turbulence model in computational fluid dynamics. Each of Cartesian, physical covariant and physical contravariant velocity components was tested as the dependent variables of momentum equations in the staggered grid system. In the flow past a circular cylinder, the results were computed to use each of three variables and compared to experimental data. In the skewed driven cavity flow, the results were computed to check the grid dependency of the variables. The results used in Cartesian and physical contravariant components of velocity in cylinder flow show the nearly same accuracy. In the case of Cartesian and contravariant component, the same number of vortex was predicted in the skewed driven cavity flow. Vortex strength of Cartesian component case has about 30% lower value than that of the other two cases.

Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems (접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계)

  • Shin Jong-Gu;Lee Tae Hoon;Yoon Tae-Sung;Choi Yoon-Ho;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar