Image processing in a discrete polar coordinate system based on L1-norm

L1-norm 기반 이산 극좌표에서의 영상처리

  • John, Min-Su (Samsung Electronics) ;
  • Lee, Nam-Koo (College of Electronics and Information Engr. Kyunghee University) ;
  • Kim, Won-Ha (College of Electronics and Information Engr. Kyunghee University) ;
  • Kim, Sung-Min (Dept. of Biomedical Engr. Kunkoon University)
  • Published : 2008.07.25

Abstract

We propose a radial image processing method in a discrete polar coordinate system based on L1-norm. For this purpose, we first verified that the polar coordinate based on L2-norm can not exist in discrete system and then develop a method converting the Cartesian coordinate to the discrete polar coordinate. We apply the proposed method to smooth mass images of breast tissue and to detect the boundaries of extremely deformable objects. Compared to the Gaussian smoothing method performed in the Cartesian coordinate system, the proposed method stabilized the image signal while maintaining the overall radial shape of mass images. The proposed boundary detection method can detect shapes with high precision while conventional edge detectors can not accurately detect the shape of deformable objects. We also exploit the method to perform pupil detection and have had good experimental results.

본 논문에서는 L1-norm 기반 이산 극좌표에서의 방사형 영상처리 기법을 제안하고자 한다. 위를 위하여, 먼저 L2-norm 기반 극좌표는 이산 시스템에서 존재할 수 없음을 확인하였고, Cartesian 좌표를 이산 극좌표로 변환하는 기법을 개발하였다. 제안된 방법을 유방암 영상의 안정화와 극도의 무정형 물체 경계 탐지에 적용한다. Cartesian 좌표계에서 수행된 Gaussian 필터링 방법과 비교하여, 제안된 방법은 전반적인 방사형 mass 영상을 유지하는 동안 영상 신호를 안정화했다. 기존의 경계 탐지기가 무정형 물체의 모양을 정확하게 찾을 수 없는 반면, 제안된 경계 탐지 기법은 높은 정밀도로 탐지해낸다. 본 논문은 또한, 홍채 영상 분리 기법에의 응용과 좋은 검증 결과를 갖게 되었다.

Keywords

References

  1. Karssemeijer, N. "Detection of masses in mammogram", Image Processing Techniques for Tumor Detection (ed. Strickland, R. N.), Marcel Dekker, Inc., New York, pp. 187-212, 2002
  2. Rangayyan, R. M., Mudigonda, N. R., Desautels, J. E. L., "Boundary modeling and shape analysis methods for classification of mammographic masses", Medical and Biological Engineering and Computing, Vol.38, pp. 487-496, 2000 https://doi.org/10.1007/BF02345742
  3. Costa, L. F., Cesar, R. M., "Shape Analysis and Classification", CRC Press, New York, 2001
  4. Gibson, J., Syood, K., "Lattice Quantization", Advanced Electronic Physics, Vol. 72, pp. 259-330, June 1988
  5. Rudin, W., "Principles of mathematical analusis. 3rd ed.", McGraw Hill, 1976
  6. Bardaud, M., "Wavelets in image communica- tion", ELSEVIER, pp. 131-159, 1994
  7. Bardaud, M., Sole, P., Antonini, M., Mathieu, P., "Pyramidal lattice vector quantization for multiscale image coding", IEEE Trans. Image Processing, Vol. 3, pp. 367-380, 1994 https://doi.org/10.1109/83.298393
  8. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Prenice Hall, 2002
  9. Chenyang Xu, Jerry L. Prince, "Snakes, Shapes, and Gradient Vector Flow", IEEE Trans. Image Processing, Vol. 7, No. 3, pp. 359-369, March 1998 https://doi.org/10.1109/83.661186
  10. Jeong, D., Park, H., Park, K., Kim, J., "Iris recognition in mobile phone based on adaptive Gabor filter", LNCS, Vol.3832, pp. 457-466, 2006
  11. Daugman, J. D., "How iris recognition works", IEEE Trans. circuits and systems for video technology, Vol.14, No. 1, pp. 21-29, 2004 https://doi.org/10.1109/TCSVT.2003.818350