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ON POLAR TAXICAB GEOMETRY IN A PLANE

HYUN GYU PARK, KYUNG ROK KIM, IL SEOG KO, BYUNG HAK KIM∗

Abstract. Most distance functions, including taxicab distance, are de-
fined on Cartesian plane, and recent studies on distance functions have
been mainly focused on Cartesian plane. However, most streets in cities
include not only straight lines but also curves. Therefore, there is a signif-

icant need for a distance function to be defined on a curvilinear coordinate
system. In this paper, we define a new function named polar taxicab dis-
tance, using polar coordinates. We prove that this function satisfies the
conditions of distance function. We also investigate the geometric proper-

ties and classifications of circles in the plane with polar taxicab distance.
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1. Introduction

In Euclidean geometry, the distance between two points is called Euclidean
distance and is defined as the length of a line segment connected by two endpoints
in a straight line. Euclidean geometry has been widely used because it is easy
to understand intuitively, and appropriate for applying various theories.

However, there is a limitation in applying the Euclidean distance function
to measure the distance between two places in real life since there are many
obstacles, such as structures and roads on a route. Accordingly, the idea of how
a taxi travels in modern cities was developed into a practical distance notion,
called the taxicab distance[4]. Taxicab distance measures the shortest distance
between two points when only movements along axis-directions are permitted.

Nevertheless, taking account of the fact that not all routes in real life are com-
posed of right angles, taxicab distance was generalized into the alpha distance[3,
5], which includes taxicab distance and Chinese checker distance[2, 5] as special
cases. Also, a distance function called generalized absolute-value metric[1] was
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introduced to generalize taxicab distance, Chinese checker distance, and alpha
distance.

All distance functions mentioned above are defined on the Cartesian plane,
and recent studies on distance functions have been mainly focused on the Carte-
sian plane. However, most streets in cities include not only straight lines but
also curves. Therefore, there is a significant need for a distance function to be
defined on a curvilinear coordinate system. Hence, we introduce a new distance
function, namely, the polar taxicab distance, using the polar coordinate system.

In this study, we prove that the polar taxicab distance satisfies the conditions
of a distance function and that the polar taxicab distance between any two
points is preserved by a reflection across the line through the origin and a rotation
around the origin. Further, we study the geometric properties and classifications
of circles in the plane with the polar taxicab distance function.

2. Polar Taxicab Distance

Let P (r, θ) be a point in the polar coordinate plane with r ≥ 0 and 0 ≤ θ < 2π.
Now, we define the function dPT (A,B) as

dPT (A,B) =

{
min{r1, r2} × |θ2 − θ1|+ |r2 − r1| (0 ≤ |θ2 − θ1| ≤ 2)

r1 + r2 (2 < |θ2 − θ1| ≤ π),
(1)

where A(r1, θ1) and B(r2, θ2) are points in a plane expressed by polar coor-
dinates. A few useful lemmas are introduced to prove that dPT is a distance
function.

Lemma 2.1. For two points A and B in the polar coordinate plane, dPT (A,B)
is preserved by the reflection on the line that passes through the origin.

Proof. Let A(r1, θ1) and B(r2, θ2) be the points in the polar coordinate plane,
and let A′ and B′ be the reflections of A and B on the line θ = ϕ. Then, the
polar coordinates of A′ and B′ are given by (r1, 2ϕ − θ1) and (r2, 2ϕ − θ2), re-
spectively. Henceforth, it is sufficient to consider the following two cases.

Case 1. 0 ≤ |θ1 − θ2| ≤ 2
Since 0 ≤ |(2ϕ− θ1)− (2ϕ− θ2)| ≤ 2 , we obtain that dPT (A,B) = |r1− r2|+

min{r1, r2}|θ1−θ2| and dPT (A
′, B′) = |r1−r2|+min{r1, r2}|(2ϕ−θ1)−(2ϕ−θ2)|.

Hence, we see that dPT (A,B) = dPT (A
′, B′).

Case 2. 2 < |θ1 − θ2| ≤ π
Since 2 < |(2ϕ − θ1) − (2ϕ − θ2)| ≤ π, we obtain that dPT (A,B) = r1 + r2

and dPT (A
′, B′) = r1 + r2. Hence, we get dPT (A,B) = dPT (A

′, B′).

Therefore, we have dPT (A,B) = dPT (A
′, B′), which implies that the reflection

on the line which passes through the origin preserves dPT (A,B). �
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Lemma 2.2. For two points A and B in the polar coordinate plane, dPT (A,B)
is preserved by the rotation around the origin.

Proof. Let A(r1, θ1) and B(r2, θ2) be the points in the polar coordinate plane
and let A′ and B′ be the rotations by ϕ around the origin. Then, the polar
coordinates of A′ and B′ are given by (r1, θ1 + ϕ) and (r2, θ2 + ϕ), respectively.
Henceforth, it is sufficient to consider the following two cases.

Case 1. 0 ≤ |θ1 − θ2| ≤ 2
Since 0 ≤ |(θ1 + ϕ)− (θ2 + ϕ)| ≤ 2, we obtain that

dPT (A,B) = |r1 − r2|+min{r1, r2}|θ1 − θ2|
and

dPT (A
′, B′) = |r1 − r2|+min{r1, r2}|(θ1 + ϕ)− (θ2 + ϕ)|.

Hence, we see that dPT (A,B) = dPT (A
′, B′).

Case 2. 2 < |θ1 − θ2| ≤ π
Since 2 < |(θ1 + ϕ)− (θ2 + ϕ)| ≤ π, we obtain that dPT (A,B) = r1 + r2 and

dPT (A
′, B′) = r1 + r2. Hence, we get dPT (A,B) = dPT (A

′, B′).

Therefore, we have dPT (A,B) = dPT (A
′, B′), which implies that the rotation

around the origin preserves dPT (A,B). �
Theorem 2.3. The function dPT defined as (1) determines a distance function
for R2.

Proof. Let O be the origin. For any three points on the polar coordinate plane,
without loss of generality, we can label these three points to satisfy the following
conditions:

(i) Three points are assigned as A, B, and C counterclockwise.
(ii) Let ∠AOB = ϕ1, ∠BOC = ϕ2, and ∠COA = ϕ3. Then 0 ≤ ϕ1, ϕ2,

ϕ3 ≤ π, and ϕ3 ≥ max{ϕ1, ϕ2}.
Now, let the coordinates of A, B, and C be A(r1, θ1), B(r2, θ2), and C(r3, θ3),
respectively.

Since r1, r2 ≥ 0, |θ2−θ1| ≥ 0, and |r2−r1| ≥ 0, we have dPT (A,B) ≥ 0. Also,
dPT (A,B) equals 0 if and only if either r1 + r2 = 0 or |r2 − r1| = |θ2 − θ1| = 0.
Therefore, dPT (A,B) = 0 if and only if A = B. Thus, dPT is positive definite.

Clearly, dPT (A,B) = dPT (B,A).
Finally, for any two points X and Y with ∠XOY = ϕ (0 ≤ ϕ ≤ π), we define

a function f as

f(X,Y ) =

{
0 (0 ≤ ϕ ≤ 2)

1 (2 < ϕ ≤ π).

Then f(A,B) + f(B,C) + f(C,A) is equal to one of 0, 1, 2, and 3. Hence, we
investigate the cases according to the values of f(A,B) + f(B,C) + f(C,A).



786 Hyun Gyu Park, Kyung Rok Kim, Il Seog Ko, Byung Hak Kim

Case 1. f(A,B) + f(B,C) + f(C,A) = 0
LetA′ and C ′ be the reflections ofA and C on the lineOB. Then, dPT (A,B) =

dPT (A
′, B), dPT (B,C) = dPT (B,C ′), and dPT (C,A) = dPT (C

′, A′) by Lemma
2.1. If r1 < r3, then dPT (O,A′) > dPT (O,C ′). Renaming C ′, B, and A′ as A,
B, and C, respectively, would lead r1 > r3. Therefore, we can assume r1 ≥ r3
without loss of generality.

Then, dPT (A,B) = min{r1, r2}ϕ1 + |r1 − r2|, dPT (B,C) = min{r2, r3}ϕ2 +
|r2 − r3|, and dPT (C,A) = min{r3, r1}(ϕ1 + ϕ2) + |r3 − r1|. Hence, we can see
that

dPT (A,B) + dPT (B,C)− dPT (C,A)

=


2(r2 − r1) + (r1 − r3)ϕ1 (r2 ≥ r1 ≥ r3)

(r2 − r3)ϕ1 (r1 ≥ r2 ≥ r3)

(r3 − r2)(2− ϕ1 − ϕ2) (r1 ≥ r3 ≥ r2),

(2)

dPT (B,C) + dPT (C,A)− dPT (A,B)

=


2(r2 − r3) + r1(2− ϕ1) + r3(ϕ1 + 2ϕ2) (r2 ≥ r1 ≥ r3)

(r2 − r3)(2− ϕ1) + 2r3ϕ2 (r1 ≥ r2 ≥ r3)

(r3 − r2)ϕ1 + (r2 + r3)ϕ2 (r1 ≥ r3 ≥ r2),

(3)

and

dPT (C,A) + dPT (A,B)− dPT (B,C)

=


(r1 + r3)ϕ1 (r2 ≥ r1 ≥ r3)

2(r1 − r2) + (r1 + r2)ϕ1 (r1 ≥ r2 ≥ r3)

2(r1 − r3) + (r2 + r3)ϕ1 + (r3 − r2)ϕ2 (r1 ≥ r3 ≥ r2).

(4)

From our hypotheses, we can easily obtain that each expression of (2), (3)
and (4) is nonnegative. Therefore, for Case 1, the triangle inequality holds.

Case 2. f(A,B) + f(B,C) + f(C,A) = 1
If r1 < r3, let A

′ and C ′ be the reflections of A and C on the line OB. Since
dPT (A,B) = dPT (A

′, B), dPT (B,C) = d(B,C ′), and dPT (C,A) = dPT (C
′, A′),

by Lemma 2.1, considering A, B, and C as C ′, B, and A′, respectively, generates
the same situation. Thus, we can assume r1 ≥ r3 without loss of generality.
Then, 0 ≤ ϕ1, ϕ2 ≤ 2, 2 < ϕ1 + ϕ2 ≤ π since f(A,B) + f(B,C) + f(C,A) = 1.

Then, dPT (A,B) = min{r1, r2}ϕ1 + |r1 − r2|, dPT (B,C) = min{r2, r3}ϕ2 +
|r2− r3|, and dPT (C,A) = r1+ r3. In order to prove that the triangle inequality
holds, we should check the signs of the following three equations.

Firstly,

dPT (A,B) + dPT (B,C)− dPT (C,A)

=


2(r2 − r3) + r1(ϕ1 + ϕ2 − 2) (r2 ≥ r1 ≥ r3) (5)

r2ϕ1 + r3ϕ2 − 2r3 (r1 ≥ r2 ≥ r3) (6)

r2(ϕ1 + ϕ2 − 2) (r1 ≥ r3 ≥ r2). (7)
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From our hypotheses, it is trivial that each expression of (5) and (7) is nonneg-
ative. Note that r2ϕ1 + r3ϕ2 − 2r3 ≥ r3(ϕ1 + ϕ2 − 2) ≥ 0 since 2 < ϕ1 + ϕ2 ≤ π.
Thus, the expression (6) is also nonnegative.

Next,
dPT (B,C) + dPT (C,A)− dPT (A,B)

=


r1(2− ϕ1) + r3ϕ2 (r2 ≥ r1 ≥ r3) (8)

r2(2− ϕ1) + r3ϕ2 (r1 ≥ r2 ≥ r3) (9)

2r3 + r2(ϕ2 − ϕ1) (r1 ≥ r3 ≥ r2) . (10)

Using our hypotheses, each expression of (8) and (9) is clearly nonnegative.
Since 0 ≤ ϕ1 ≤ 2, we have 2r3 + r2(ϕ2 − ϕ1) ≥ r2(2− ϕ1 + ϕ2) ≥ 0 so that the
expression (10) is also nonnegative.

Finally,
dPT (C,A) + dPT (A,B)− dPT (B,C)

=


r3(2− ϕ2) + r1ϕ1 (r2 ≥ r1 ≥ r3) (11)

2(r1 − r2) + r3(2− ϕ2) + r2ϕ1 (r1 ≥ r2 ≥ r3) (12)

2r1 + r2(ϕ1 − ϕ2) (r1 ≥ r3 ≥ r2). (13)

From our hypotheses, we can easily obtain that each expression of (11) and (12)
is nonnegative. Note that 0 ≤ ϕ2 ≤ 2. Then we have 2r1 + r2(ϕ1 − ϕ2) ≥
r2(2 + ϕ1 − ϕ2) ≥ 0 so that the expression (13) is also nonnegative. Therefore,
for Case 2, the triangle inequality holds.

Case 3. f(A,B) + f(B,C) + f(C,A) = 2
If ϕ2 < ϕ1, let A′, C ′ be the reflections of A and C on the line OB. Since

dPT (A,B) = dPT (A
′, B), dPT (B,C) = d(B,C ′), and dPT (C,A) = dPT (C

′, A′),
by Lemma 2.1, considering A, B, and C as C ′, B, and A′, respectively, generates
the same situation. Thus, we can assume ϕ2 ≥ ϕ1 without loss of generality.
Then, 0 ≤ ϕ1 ≤ 2, 2 < ϕ2 ≤ π, and 2 < ϕ3 ≤ π since f(A,B) + f(B,C) +
f(C,A) = 2. Then, dPT (A,B) = min{r1, r2}ϕ1+ |r1− r2|, dPT (B,C) = r2+ r3,
and dPT (C,A) = r1 + r3. Hence, we can see that

dPT (A,B) + dPT (B,C)− dPT (C,A) =

{
r2ϕ1 (r1 ≥ r2)

2(r2 − r1) + r1ϕ1 (r1 < r2),
(14)

dPT (B,C) + dPT (C,A)− dPT (A,B) =

{
2r3 + r2(2− ϕ1) (r1 ≥ r2)

2r3 + r1(2− ϕ1) (r1 < r2),
(15)

and

dPT (C,A) + dPT (A,B)− dPT (B,C) =

{
2(r1 − r2) + r2ϕ1 (r1 ≥ r2)

r1ϕ1 (r1 < r2).
(16)

From our hypotheses, we can easily obtain that each expression of (14), (15),
and (16) is nonnegative. Therefore, for Case 3, the triangle inequality holds.
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Case 4. f(A,B) + f(B,C) + f(C,A) = 3
Then, dPT (A,B) = r1 + r2, dPT (B,C) = r2 + r3, and dPT (C,A) = r1 + r3.

Hence, we can see that

dPT (A,B) + dPT (B,C)− dPT (C,A) = 2r2 ≥ 0,

dPT (B,C) + dPT (C,A)− dPT (A,B) = 2r3 ≥ 0,

and
dPT (C,A) + dPT (A,B)− dPT (B,C) = 2r1 ≥ 0.

Therefore, for Case 4, we easily obtain that the triangle inequality holds. Con-
sequently, the proof of the theorem is completed. �

Due to Theorem 2.3, we define a new distance function.

Definition 2.4. A function dPT defined as (1) is called a polar taxicab distance
function.

3. Circles in Polar Taxicab Geometry

A polar taxicab circle in polar taxicab geometry is a set of points that has the
same polar taxicab distance from a fixed point, as that in Euclidean geometry.
The general shape of a polar taxicab circle changes as the center of the polar
taxicab circle changes. In addition, its shape varies as the ratio of the radius
and the distance from the center to the origin changes.

Theorem 3.1. The locus of points whose polar taxicab distance from the origin
is constant is a Euclidean circle.

Proof. It is obvious that dPT (O,P ) = |r| for any point P (r, θ) on the polar
taxicab circle. For the points whose polar taxicab distance from O is R, Eu-
clidean distance from O to P is also R. Therefore, the locus of P is a Euclidean
circle. �

Theorem 3.2. The locus of points whose polar taxicab distance from a point C
is constant is one of three configurations shown in Figure 1(a), 1(b), and 1(c),
where C is not the origin.

Proof. Since rotation around the origin does not change the shape of figure by
Lemma 2.2, we can put the point C on the axis by using rotation around the
origin. Let the coordinate of C be C(k, 0), and let P (r, θ) be a point on the
polar taxicab circle satisfying dPT (C,P ) = R.

Since the region where 0 ≤ θ ≤ π and the region where −π ≤ θ ≤ 0 are
symmetric, it is sufficient to consider the region where 0 ≤ θ ≤ π. Thus, there
are the following two cases to consider.

Case 1. R ≥ k
For the region where 0 ≤ θ ≤ 2, if r ≤ k, then dPT (C,P ) = k − r + rθ = R,

so r(θ − 1) = R − k. If there is a point P (r, θ) such that 0 ≤ θ < 1 and
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(a) (b) (c)

Figure 1. types of polar taxicab circles.

dPT (C,P ) = R, then dPT (C,P ) = k − r + rθ = R. However, k − r + rθ < k
leads to a contradiction. Thus, if there exists P and dPT (C,P ) = R, then P
lies on 1 ≤ θ ≤ 2. Also, R − k ≤ k(θ − 1) holds since r(θ − 1) ≤ k(θ − 1) and
r(θ − 1) = R− k. Hence, if there exists θ which satisfies R

k ≤ θ, then R ≤ 2k.
Therefore, there exists P only if 1 ≤ θ ≤ 2, k ≤ R ≤ 2k, and its locus is

r(θ − 1) = R− k.
If r > k, then dPT (C,P ) = r − k + kθ = R, so r + kθ = k + R. Also,

k + R − kθ > k, and θ < R
k . Thus there always exists θ such that θ < R

k , and
its locus is r + kθ = k +R.

For the region where 2 < θ ≤ π, dPT (C,P ) = r + k = R, so r = R − k.
Therefore, there always exists r which satisfies r = R − k since R − k > 0 and
its locus is r = R− k.

Case 2. R < k
If there is a point P (r, θ) such that 2 < θ ≤ π and dPT (C,P ) = R, then

dPT (C,P ) = r+ k ≥ k. However, R < k leads to a contradiction. Thus, if there
exists P and dPT (C,P ) = R, then θ ≤ 2.

If r ≤ k, then dPT (C,P ) = k− r+ rθ = R, so r(1− θ) = k−R. r(1− θ) > 0
since R < k and there exists θ only if θ < 1. Also, k − R ≤ k − kθ holds since
r(1− θ) ≤ k(1− θ). Therefore, there exists P only if 0 ≤ θ ≤ R

k and its locus is
r(1− θ) = k −R.

If r > k, then dPT (C,P ) = r−k+kθ = R, so r+kθ = R+k. k+R−kθ > k
since r > k, resulting in θ < R

k . Therefore, there exists P only if θ < R
k , and its

locus is r + kθ = R+ k.

In Case 1, there are two types of polar taxicab circles where 1 ≤ R
k < 2 and

2 ≤ R
k . In Case 2, there is one type of circle where 0 < R

k < 1 in polar taxicab
geometry. Therefore, if point C is not the origin, there are three possible types
of the locus of points, as illustrated in Figure 1(a), Figure 1(b), and Figure 1(c),
whose polar taxicab distance from the point C is constant. �
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