• Title/Summary/Keyword: Carrier state

Search Result 429, Processing Time 0.027 seconds

Adaptive CSMA/CA Protocol Using Flag in Aeronautical VHF Communication (플래그를 이용한 항공 VHF 통신환경에서의 적응형 CSMA/CA 프로토콜)

  • Kim, Yong Joong;Park, Yong Tae;Park, Hyo Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.199-205
    • /
    • 2003
  • In this paper, CSMA/CA protocol is modified for aeronautical VHF communication through collision alleviation and the change of retransmission slot selection method in flag used transmission. When collision occurred in the contention period of CSMA/CA process, it is generally waiting for retransmission delay and it has the double size of CW(Contention Window). To solve this problem, this paper modifies the change procedure of original contention window size and reduces the state transition in collision among the whole of it. Also, in this paper we reduces the second collision probability through the station has to enter Backoff mode with increased contention window in the first collision. In the result of simulation, it is verified that it has good property in throughput and delay, So the proposed protocol is suitable for aeronautical VHF communication.

  • PDF

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Drug Release from Xyloglucan Beads Coated with Eudragit for Oral Drug Delivery

  • Yoo Mi Kyong;Choi Hoo Kyun;Kim Tae Hee;Choi Yun Jaie;Akaike Toshihiro;Shirakawa Mayumi;Cho Chong Su
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.736-742
    • /
    • 2005
  • Xyloglucan (XG), which exhibits thermal sol to gel transition, non-toxicity, and low gelation concentration, is of interest in the development of sustained release carriers for drug delivery. Drug-loaded XG beads were prepared by extruding dropwise a dispersion of indomethacin in aqueous XG solution (2 wt.-$\%$) through a syringe into corn oil. Enteric coating of XG bead was performed using Eudragit L 100 to improve the stability of XG bead in gastrointestinal (GI) track and to achieve gastroresistant drug release. Release behavior of indomethacin from XG beads in vitro was investigated as a function of loading content of drug, pH of release medium, and concentration of coating agent. Adhesive force of XG was also measured using the tensile test. Uniform-sized spherical beads with particle diameters ranging from 692 $\pm$ 30 to 819 $\pm$ 50 $\mu$m were obtained. The effect of drug content on the release of indomethacin from XG beads depended on the medium pH. Release of indomethacin from XG beads was retarded by coating with Eudragit and increased rapidly with the change in medium pH from 1.2 to 7.4. Adhesive force of XG was stronger than that of Carbopol 943 P, a well-known commercial mucoadhesive polymer, in wet state. Results indicate the enteric-coated XG beads may be suitable as a carrier for oral drug delivery of irritant drug in the stomach.

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

Recent Developments in Aviation Case Law (국제항공운송법(國際航空運送法) 판례(判例)의 최근(最近) 동향(動向))

  • Choi, June-Sun;Kahng, Seung-Hoon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.5
    • /
    • pp.119-169
    • /
    • 1993
  • In this article the present writers have surveyed recent cases on Warsaw Convention especially on the cases emerged in the years between 1986 to 1993. The cases before 1986 were discussed already in the book titled "Liability of International Air Carrier," written by Professor Choi, published in Seoul 1986. In this article the writers have reviewed most of the American cases and some cases from the courts of Germany, France and England. Main subjects which were discussed herein were as follows: Liability of air carriers in Warsaw Convention carriage 1. Exclusivity of the Warsaw Convention as a remedy 2. Warsaw Jurisdiction 3. The scope of the Warsaw Convention's definition of "Accident" under Article 17 of the Warsaw Convention (1) Mental anguish (2) Unusual or unexpected events 4. Adequacy of notice of the limitation of liability to passengers for injuries and death 5. Damages recoverable, punitive damages and burden of proof 6. The wilful misconduct exception; definition of wilful misconduct 7. Cargo and passenger baggage 8. Time limitation of actions After examining articles published world-wide, this article compiles and analyses recent cases involving the Warsaw Convention system. As Warsaw System is based on international convention, maintaining uniformity in interpretation is of utmost importance. Therefore, this type of study is essential for resolving air-transportation disputes in Korea. This article examines the current state and recommends the desired course for the Warsaw Convention. The writers hope that this article is helpful to the Korean courts and those in the air-transportation industry in interpreting the Warsaw Convention.

  • PDF

Decomposition of Chlorinated Methane by Thermal Plasma (열플라즈마에 의한 클로로메탄의 분해)

  • Kim, Zhen Shu;Park, Dong Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.136-141
    • /
    • 2007
  • The decomposition of chlorinated methanes including $CCl_4$, $CCl_3H$, and $CCl_2H_2$ was carried out using a thermal plasma process and the characteristics of the process were investigated. The thermal equilibrium composition was analyzed with temperature by Fcatsage program. The decomposition rates at various process parameters including the concentration of reactants, flow rate of carrier gas, and quenching rate, were evaluated, where sufficiently high conversion over 92% was achieved. The generation of main products was strongly influenced by the reaction atmosphere; carbon, chlorine, and hydrogen chloride at neutral condition; carbon dioxide, chlorine, and hydrogen chloride at oxidative condition. The decomposition mechanism was speculated considering the results from Factsage and the identification of generated radicals and ionic species. The main decomposition pathways were found to be dissociative electron attachment and oxidative by radicals formed in a plasma state.

Femto-second Laser Ablation Process for Si Wafer Through-hole (펨토초 레이저 어블레이션을 이용한 Si 웨이퍼의 미세 관통 홀 가공)

  • Kim, Joo-Seok;Sim, Hyung-Sub;Lee, Seong-Hyuk;Shin, Young-Eui
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2007
  • The main objectives of this study are to investigate the micro-scale energy transfer mechanism for silicon wafer and to find an efficient way for fabrication of silicon wafer through-hole by using the femtosecond pulse laser ablation. In addition, the electron-phonon interactions during laser irradiation are discussed and the carrier number density and temperatures are estimated. In particular, the present study observes the shapes of silicon wafer through-hole with $100\;{\mu}m$ diameter and it also measures the heat-affected area and the ablation depths fur different laser fluences by using the optic microscope and the three-dimensional profile measurement technique. First, from numerical investigation, it is found that the nonequilibrium state exists between electrons and phonons during laser irradiation. From experimental results, it should be noted that the heat-affected area increases with laser fluence, and the optimal conditions for through-hole formation with minimum heat affected zone are finally obtained.

  • PDF

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • Gang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

Comparison of Passivation Property on Hydrogenated Silicon Nitrides whose Antireflection Properties are Identical (반사방지 특성을 통일시킨 실리콘 질화막 간의 패시베이션 특성 비교)

  • Kim, Jae Eun;Lee, Kyung Dong;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Silicon nitride ($SiN_x:H$) films made by plasma enhanced chemical vapor deposition (PECVD) are generally used as antireflection layers and passivation layers on solar cells. In this study, we investigated the properties of silicon nitride ($SiN_x:H$) films made by PECVD. The passivation properties of $SiN_x:H$ are focused on by making the antireflection properties identical. To make equivalent optical properties of silicon nitride films, the refractive index and thickness of the films are fixed at 2.0 and 90 nm, respectively. This limit makes it easier to evaluate silicon nitride film as a passivation layer in realistic application situations. Next, the effects of the mixture ratio of the process gases with silane ($SiH_4$) and ammonia ($NH_3$) on the passivation qualities of silicon nitride film are evaluated. The absorption coefficient of each film was evaluated by spectrometric ellipsometry, the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained using a UV-visible spectrophotometer. The interface properties were determined by capacitance-voltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD). In hydrogen passivation, gas ratios of 1:1 and 1:3 show the best surface passivation property among the samples.

The co-effect of $TiO_2$, Cu and Ni Powders for Enhancing the Hydrogen Generation Efficiency using Plasma Technology (플라즈마 반응기의 수소발생에 미치는 $TiO_2$, Cu, Ni 촉매제 영향)

  • Park, Jae-Yoon;Kim, Jong-Suk;Jung, Jang-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1599-1605
    • /
    • 2008
  • The research was conducted in order to improve the hydrogen generation efficiency of the electrical plasma technology from tap water by using $TiO_2$ photocatalyst, mixed Cu - $TiO_2$ powder, and mixed Ni - $TiO_2$ powder as the catalysts. Experiments were performed with the pulsed power and nitrogen carrier gas. The result has shown that the hydrogen concentration with the presence of $TiO_2$ powder was created higher than that of without using photocatalyst. The hydrogen concentration with using $TiO_2$ was 3012ppm corresponding to the applied voltage of 16kV, while it without using the $TiO_2$ was 1464ppm at the same condition . The effect of $TiO_2$ powder was strongly detected at the applied voltages of 15kV and 16kV. This phenomena might be resulted from the co-effect of the pulsed power discharge and the activated state of $TiO_2$ photocatalyst. The co-effect of the mixed catalysts such as Cu-$TiO_2$ and Ni-$TiO_2$ (the mixed photocatalyst $TiO_2$ and transition metals) were also investigated. The experimental results showed that, Cu and Ni powder dopants were greatly enhancing the activity of the $TiO_2$ photocatalyst. Under these experimental conditions the extremely high hydrogen concentrations at the optimal point were produced as 4089ppm and 6630ppm, respectively.