• Title/Summary/Keyword: Carrier concentration and mobility

Search Result 259, Processing Time 0.033 seconds

Effects of Deposition Temperature on the Properties of InN Thin Films Grown by Radio-frequency Reactive Magnetron Sputtering (증착 온도가 RF 반응성 마그네트론 스퍼터링법으로 성장된 InN 박막의 특성에 미치는 영향)

  • Cho, Shin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.808-813
    • /
    • 2009
  • Indium nitride thin films were deposited by the radio-frequency reactive magnetron sputtering method. The indium target was sputtered by the mixture flow ratio of $N_2$ to Ar, 9:1. The effects of growth temperature on the structural, optical, and electrical properties of the films were investigated. With increasing the growth temperature, the crystallinity of the films was improved, and the crystalline size was increased. The energy bandgap for the film grown at $25^{\circ}C$ was 3.63 eV, and the bandgap showed an increasing tendency on the growth temperature. The carrier concentration, Hall mobility and electrical resistivity of the films depended significantly on the growth temperature and the maximum Hall mobility of $32.3\;cm^2$/Vsec was observed for the film grown at $400^{\circ}C$.

Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature (열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.

Properties of ITO thin films with film thickness at room temperature (막 두께 변화에 따라 실온 제작된 ITO 박막의 특성)

  • Kim, K.H.;Kim, H.W.;Keum, M.J.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1856-1858
    • /
    • 2005
  • In this study, Indium Tin Oxide(ITO) thin films were prepared at $O_2$ gas 0.2 sccm, no heating to substrate and working pressure 1mTorr with varying deposition time. We estimated structural, optical, electrical characteristics of ITO thin films as function of ITO thin films thickness. As a result, XRD peaks increased with increasing the thickness. The ITO thin film was fabricated with resistivity $4.23{\times}10^{-4}[{\Omega}{\cdot}cm]$, carrier mobility $52.9[cm^2/V{\cdot}sec]$, carrier concentration $2.79{\times}10^{20}[cm^{-3}]$. And we also observed that the SEM images of ITO thin films surface.

  • PDF

Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target (원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화)

  • Shin, Beom-Ki;Lee, Tae-Il;Park, Kang-Il;Ahn, Kyoung-Jun;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.47-50
    • /
    • 2010
  • Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

Effect of a Cu Buffer Layer on the Structural, Optical, and Electrical Properties of IGZO/Cu bi-layered Films

  • Moon, Hyun-Joo;Gong, Tae-Kyung;Kim, Daeil;Choi, Dong-Hyuk;Son, Dong-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.18-20
    • /
    • 2016
  • Transparent and conducting IGZO thin films were deposited by RF magnetron sputtering on thin Cu coated glass substrates to investigate the effect of a Cu buffer layer on the structural, optical, and electrical film properties. Although X-ray diffraction (XRD) analysis revealed that both the IGZO single layer and IGZO/Cu bi-layered films were in the amorphous phase, the IGZO/Cu films showed a lower resistivity of 5.7×10−4 Ωcm due to the increased mobility and high carrier concentration. The decreased optical transmittance of the IGZO/Cu films was also attributed to a one order of magnitude higher carrier concentration than the IGZO films. From the observed results, the thin Cu layer is postulated to be an effective buffer film that can enhance the opto-electrical performance of the IGZO films in transparent thin film transistors.

Characterization of Al:ZnO thin films deposited at different substrate temperatures (기판 온도변화에 따른 Al-ZnO 박막의 특성)

  • No, I.J.;Shin, P.K.;Lee, C.;Kim, Y.H.;Ji, S.H.;Lim, Y.C.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.242-243
    • /
    • 2007
  • Highly transparent conducting aluminum-doped zinc oxide (AZO) thin films were deposited on Corning glass substrate using an Nd:YAG pulsed laser deposition technology. AZO thin films deposited with 650nm thickness showed the best electrical properties of the electrical resistivity of $4.6{\times}10^{-4}[{\Omega}{\cdot}cm]$, a carrier concentration of $9.3{\times}10^{20}[cm^{-3}]$, and a carrier mobility of $31[cm^2/V{\cdot}s]$. Besides, the optical transmittance spectra in visible region (200-800nm) of AZO thin films show an high average transmittance over 90%.

  • PDF

Properties of CulnSe$_{2}$ thin films selenizing indium/copper layers prepared by D.C. magnetron sputtering (D.C. magnetron sputtering에 의해 indium/copper 층이 selenizing된 $CuInSe_2$막의 특성)

  • Han, Sang-Kyu;Kim, Sun-Jae;Lee, Hyung-Bock;Lee, Byung-Ha;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.298-305
    • /
    • 1995
  • Copper-indium diselenide, $CuInSe_2$, thin films have been fabricated by selenizing Cu/In stacked layers with different sputtered Cu/(Cu+ln) mole ratios at 450.deg. C for 1hr on alumina substrates. The selenium source was selenium vapor. Microstructure, crystallization, and composition of the selenized $CuInSe_2$ films were examined by using scanning electron microscope, X-ray diffraction, Auger electron spectroscopy, and secondary ion mass spectrometry. Electrical resistivity and hall effects were also measured to investigate the electrical properties. As the sputtered Cu/(Cu+In) mole ratio of In/Cu layer increased, the amounts of void and CuSe phase in the selenized films increased but the composition of $CuInSe_2$ phase was the same regardless of the sputtered mole ratio. Comparing the electrical properties of $CuInSe_2$ thin film before and after the chemical etching, it was seen that the electrical resistivity, carrier concentration, and carrier mobility of the selenized films were affected by the amount of CuSe phase which seemed to increase primarily the hole concentration of the selenized films.

  • PDF

A study on the InSb crystal growth and the Zn diffusion (InSb 결정 성장과 Zn 확산에 관한 연구)

  • Kim, Back-Nyoun;Song, Bok-Sik;Moon, Dong-Chan;Kim, Seon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.816-819
    • /
    • 1992
  • Binary compound semiconductor InSb crystal which has direct-transition energy gap (0.17 ev) grown by vertical Bridgman method, then the electric-magnetic and optical properties of InSb crystal were surveyed. The growth rate of the crystals was 1mm/hr and the lattice constant $a_\circ$ of the grown crystal was 6.4863$\AA$. The electrical properties were examined by the Hall effect measurement with the van der Pauw method in the temperature range of 70$\sim$300K, magnetic field range of 500$\sim$10000 gauss. The undoped InSb crystal was n-type, the concentration and the electron mobility were 2$\sim$6 ${\times}$ $10^{16}$$\textrm{cm}^{-3}$ and carrier mobility was 6$\sim$2${\times}$$10^{4}$$cm^{2}$/v.sec at 300K, respectively. The carrier mobility was decreased with $T^{-1/2}$ due to the lattice scattering above 100K, and decreased by impurity scattering below100K. The magnetoresistance was increased 190% at 9000 gauss as compared with non-appliced magnetic field and the magnetoresistance was increased with increasing the magnetic field. Also, the Hall voltage was increased with increasing the magnetic field and decreasing the thickness of sample. The optical energy band gap of InSb at room temperature determined using the IR spectrometer was 0.167eV. The diffusion depth of Zn into InSb proportionally increased with the square root of diffusion time and the activation energy for Zn diffusion was 0.67eV. The temperature dependence of diffusion coefficient was $D=4.25{\times}10^{-3}$exp (-0.67/$K_BT$).

  • PDF

High performance of ZnO thin film transistors using $SiN_x$ and organic PVP gate dielectrics

  • Kim, Young-Woong;Park, In-Sung;Kim, Young-Bae;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.187-191
    • /
    • 2007
  • The device performance of ZnO-thin film transistors(ZnO-TFTs) with gate dielectrics of $SiO_2,\;SiN_x$ and Polyvinylphenol(PVP) having a bottom gate configuration were investigated. ZnO-TFTs can induce high device performance with low intrinsic carrier concentration of ZnO only by controlling gas flow rates without additional doping or annealing processes. The field effect mobility and on/off ratio of ZnO-TFTs with $SiN_x$ were $20.2cm^2V^{-1}s^{-1}\;and\;5{\times}10^6$ respectively which is higher than those previously reported. The device adoptable values of the mobility of $1.37cm^2V^{-1}s^{-1}$ and the on/off ratio of $6{\times}10^3$ were evaluated from the device with organic PVP dielectric.