• Title/Summary/Keyword: Carrier Multiplication

Search Result 11, Processing Time 0.023 seconds

Observation of Carrier Multiplication via Internal Quantum Efficiency Exceeding 100% in PbS QDs Monolayer Solar Cells

  • Park, So Yeon;Chung, Hyun Suk;Han, Gill Sang;Su, Jang Ji;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.467.1-467.1
    • /
    • 2014
  • Quantum dots (QD) solar cells has received considerable attention due to their potential of improving the overall conversion efficiency by harvesting excess energy via multiple excitons generation (MEG). Although there have been many reports which show MEG phenomena by using optical measurement of quantum dots themselves, carrier multiplication in real QD photovoltaic devices has been sparsely reported due to difficulty in dissociation of excitons and charge collection. In this reports, heterojunction QD solar cells composed of PbS QD monolayer on highly crystalline $TiO_2$ thin films were fabricated by using Langmuir-Blodgett deposition technique to significantly reduce charge recombination at the interfaces between each QD. The PbS CQDs monolayer was characterized by using UV-vis, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The internal quantum efficiency (IQE) for the monolayer QD solar cells was obtained by measurement of external quantum efficiency and determining light absorption efficiency of active layer. Carrier multiplication was observed by measuring IQE greater than 100% over threshold photon energy. Our findings demonstrate that monolayer QD solar cell structure is potentially capable of realizing highly efficient solar cells based on carrier multiplication.

  • PDF

Photocurrent multiplication process in OLEDs (Photocurrent에 의한 유기발광소자의 발광효율특성 연구)

  • Lim, Eun-Ju;Han, Woo-Mi;E, Jung-Yoon;Cha, Deok-Joon;Lee, Yong-San;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.77-80
    • /
    • 2002
  • In order to enhence the photocurrent multiplication process, we controlled the irradiation light and the material of cathode layer of organic light emitting diodes (OLEDs). The structures of OLEDs were indium tin oxaide (ITO)/ copper(II) phthalocyanine (CuPc)/triphenyl-diamine (TPD)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/ aluminum (Al). We found that OLEDs were changed by the photocurrent and free charge carrier multiplication process due to the irradiation of light. The rate of photocurrent was increased by the irradiation of red and blue light.

  • PDF

Photocurrent Multiplication Process in OLEDs Due to a Crystalline of Hole Injection Layer of Copper(II)-phthalocyanine and a Light Irradiation (유기발광소자내 정공주입층 Copper(II)-phthalocyanine의 결정 및 광원에 따른 Photocurrent 증폭 연구)

  • 임은주;박미화;윤순일;이기진;차덕준;김진태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.622-626
    • /
    • 2003
  • We report the electrical properties of organic light emitting diodes (OLEDs) depending on the crystal structure of hole injection layer of copper(II)-phthalocyanine(CuPc) and the light irradiation the carrier mobility of copper(II)-phthalocyanine(CuPc) of light source. OLEDs were constructed with indium tin oxide(ITO)/CuPc/triphenyl-diamin(TPD)/tris-(8-hydroxyquinoline)aluminum(Alq$_3$)/Al.Photocurrent multiplication of OLEDs was varied by the heat-treatment condition of CuPc thin film and the light irradiation.

An Alternative Carrier Phase Independent Symbol Timing Offset Estimation Methods for VSB Receivers (VSB 수신기를 위한 반송파 위상 오차에 독립적인 심벌 타이밍 옵셋 추정 알고리즘에 대한 연구)

  • Shin, Sung-Soo;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.85-95
    • /
    • 2011
  • In this paper, we propose an alternative carrier phase independent timing recovery method for VSB receivers. The Gardner algorithm may not estimate a timing offset in VSB systems when the residual carrier phase offset is contained in the signal. We use the conjugate multiplication of received signals for cancelling out the carrier phase offset. Then Gardner algorithm is employed for extracting the spectral line. The proposed method generates a consistent timing error even in the presence of the carrier phase offset.

Photocurrent multiplication process in OLEDs due to light irradiation and crystalline hole transporting layer (유기발광소자의 결정구조에 따른 Photocurrent 발광효율특성 연구)

  • Lim, Eun-Ju;Lee, Kie-Jin;Han, Woo-Mi;E, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1026-1029
    • /
    • 2002
  • We report the electric properties of organic light emitting diodes (OLEDs) by controlling the carrier density according to the crystalline of copper(II) phthalocyanine(CuPc) and the irradiation light intensity. OLEDs were constructed with indium tin oxaide (ITO)/CuPc/triphenyl-diamin (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq3)/Al. The transport properties of OLEDs were changedby the heat-treatments of CuPc. The irradiation of red and blue light exciting CuPc, TPD and Alq3. And then we observed the carrier density of OLEDs.

  • PDF

A Simple Carrier Frequency Recovery Scheme for DVB-S2 Systems (DVB-S2 시스템을 위한 간단한 반송파 주파수 복구부 설계에 관한 연구)

  • Oh, Jong-Kyu;Yoon, Eun-Chul;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.182-191
    • /
    • 2010
  • In this paper, a simple Carrier Frequency Recovery(CFR) scheme is introduced. In relating the use of consumer-grade equipment and satellite transmission environments, carrier frequency recovery have to recovery a large initial Carrier Frequency Offset(CFO), which is 20% normalized CFO, for DVB-S2 receivers. For these reasons, conventional CFR schemes for DVB-S2 systems need significant hardware complexity. Introduced CFR scheme employs Fitz algorithm for coarse CFR and recovers a coarse CFO accurately, and a simple pilot block correlation algorithm is employed for fine CFR. Introduced scheme reduce the number of multiplication operations by 80% and does not need any additional memory without degrading the achievable performance.

A Correlation between Emile Sound and Other Waves (에밀레의 맥놀이와 다른 파동과의 상관관계)

  • 안정근;진용옥
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • The most important characteristic of Emile Bell's sound is a beating. It is modulation phenomenon which appears as a result of interference multiplication in time domain. This modulation phenomenon can be modeled as DSB-SC which suppress carrier and signals distributed both sides. The beatiog wave is observed in Laman distribution signal for polyvinyl speech signal, water vein wave, tide wave. The beating wave is caused by asymmetry Property of the bell.

  • PDF

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF

Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor (진동형 각속도 검출 센서를 위한 애널로그 신호처리 ASIC의 구현)

  • 김청월;이병렬;이상우;최준혁
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.65-73
    • /
    • 2003
  • This paper presents the implementation of an analog signal-processing ASIS to detect an angular velocity signal from a vibrator angular velocity detection sensor. The output of the sensor to be charge appeared as the variation of the capacitance value in the structure of the sensor was detected using charge amplifiers and a self oscillation circuit for driving the sensor was implemented with a sinusoidal self oscillation circuit using the resonance characteristics of the sensor. Specially an automatic gain control circuit was utilized to prevent the deterioration of self-oscillation characteristics due to the external elements such as the characteristic variation of the sensor process and the temperature variation. The angular velocity signal, amplitude-mod)Hated in the operation characteristics of the sensor, was demodulated using a synchronous detection circuit. A switching multiplication circuit was used in the synchronous detection circuit to prevent the magnitude variation of detected signal caused by the amplitude variation of the carrier signal. The ASIC was designed and implemented using 0.5${\mu}{\textrm}{m}$ CMOS process. The chip size was 1.2mm x 1mm. In the experiment under the supply voltage of 3V, the ASIC consumed the supply current of 3.6mA and noise spectrum density from dc to 50Hz was in the range of -95 dBrms/√Hz and -100 dBrms/√Hz when the ASIC, coupled with the sensor, was in normal operation.