• Title/Summary/Keyword: Carrier Barrier

Search Result 155, Processing Time 0.028 seconds

The Potential Barrier Heights and the Carrier Densities of ZnO Varistors with Various Compositions

  • Cho, Sung-Gurl;Kwak, Min-Hwan;Lee, Sang-Ki;Kim, Hyung-Sik
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 1998
  • The barrier heights and carrier densities of ZnO varistors with various compositions were estimated using C-V, J-V and $\rho$-T relations. The barrier heights obtained from C-V and J-V plots were 0.73~5.98 eV and 0.25~2.70 eV, respectively. The carrier densities estimated from C-V plots were ~$10^{18}cm^{-3}$. Acceptable values of the barrier heights and the carrier densities were obtained from $\rho$-1/T curves and the capacitances at zero bias; 0.6~0.8 eV for the barrier heights and ~$10^{17}cm^{-3}$ for carrier densities. Addition of cobalt increased the barrier height and the carrier density, while chromium slightly lowered both of them.

  • PDF

Electrical Properties of TiO2 Thin Film and Junction Analysis of a Semiconductor Interface

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.248-251
    • /
    • 2018
  • To research the characteristics of $TiO_2$ as an insulator, $TiO_2$ films were prepared with various annealing temperatures. It was researched the currents of $TiO_2$ films with Schottky barriers in accordance with the contact's properties. The potential barrier depends on the Schottky barrier and the current decreases with increasing the potential barrier of $TiO_2$ thin film. The current of $TiO_2$ film annealed at $110^{\circ}C$ was the lowest and the carrier density was decreased and the resistivity was increased with increasing the hall mobility. The Schottky contact is an important factor to become semiconductor device, the potential barrier is proportional to the hall mobility, and the hall mobility increased with increasing the potential barrier and became more insulator properties. The reason of having the high mobility in the thin films in spite of the lowest carrier concentration is that the conduction mechanism in the thin films is due to the band-to-band tunneling phenomenon of electrons.

The Influence of Foreign-born Mothers' Acculturative Stress on Their Children's Carrier Barrier in Multicultural Families: Focusing on the Mediation Effects of Mothers' Daily Stress, Depression, and Neglectful Parenting (다문화가정 외국인 어머니의 문화적응 스트레스가 자녀의 진로장벽에 미치는 영향: 어머니의 일상생활 스트레스, 우울, 방임적 양육태도의 매개효과를 중심으로)

  • Lee, RaeHyuck;Chang, Hae-Lim
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.773-784
    • /
    • 2021
  • This study aimed to examine the mediation effects of foreign-born mothers' daily stress, depression, and neglectful parenting in the influence of mothers' acculturative stress on children's carrier barrier in multicultural families. For testing research questions, using Model 6 of the SPSS PROCESS Macro, this study analyzed simple and multiple mediation effects with a sample of 1,021 adolescents with Korean fathers and foreign-born mothers from the 8th wave's raw data of the Multicultural Adolescent Panel Study (MAPS). The main results are as follows. First, mothers' acculturative stress positively influenced children's carrier barrier. Second, mother's daily stress and neglectful parenting individually mediated the influence of mothers' acculturative stress on children's carrier barrier. Third, mother's depression and neglectful parenting dual-mediated the influence of mothers' acculturative stress on children's carrier barrier. Fourth, a triple mediation of mothers' daily stress, depression, and neglectful parenting was found in the influence of mothers' acculturative stress on children's carrier barrier. Based on the results, strategies to support the career development of multicultural adolescents were suggested.

Ozone Generation Characteristics in Dielectric Barrier Discharge (유전체 장벽 방전내에서 오존발생 특성)

  • Lee, Hyeong-Ho;Jo, Guk-Hui;Kim, Yeong-Bae;Seo, Gil-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.673-678
    • /
    • 2000
  • The dielectric barrier discharge(DBD) is a common method to create a nonthermal plasma in which electrical energy is used to create electrons with a high average kinetic energy. The unique aspect of dielectric barrier discharges is the large array of short lifetime(10ns) silent discharges created over the surface of the dielectric. A silent discharge is generated when the applied voltage exceeds the breakdown voltage of the carrier gas creating a conduction path between the applied electrode and grounded electrode. As charge accumulates on the dielectric, the electric field is reduced below the breakdown field of the carrier gas and the silent discharge self terminates preventing the DBD cell from producing a thermal arc. In fact, the most significant application of dielectric barrier discharges is to generate ozone for contaminated water treatment. Therefore, experiments were perfomed at 1∼2[bar] pressure using a coaxial geometry single dielectric barrier discharge for ozone concentrations and energy densities. The main result show that the concentration and efficiency of ozone are influenced by gas nature, gas quantity, gas pressure, supplied voltage and frequency.

  • PDF

Role of Endogenous Transport Systems for the Transport of Basic and Acidic Drugs at Blood-Brain Barrier (염기성 및 산성 약물의 혈액-뇌관문 투과에 관여하는 내인적 수송계)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The endothelial cell of brain capillary called the blood-brain barrier (BBB) has carrier-mediated transport systems for nutrients and drugs. The mechanism of the BBB transport of basic and acidic drugs has been reviewed and examined for endogenous transport systems in BBB in WKY and SHRSP. Acidic drugs such as salicylic acid and basic drugs such as eperisone are taken up in a carrier mediated manner through the BBB via the monocarboxylic acid and amine transport systems. The specific dysfunction for the choline transport at the BBB in SHRSP would affect the function of the brain endothelial cell and brain parenchymal cell. The utilization of the endogenous transport systems of monocarboxylic acid and amine could be promising strategy for the effective drug delivery to the brain.

  • PDF

High Temperature Electrical Behavior of 2D Multilayered MoS2

  • Lee, Yeon-Seong;Jeong, Cheol-Seung;Baek, Jong-Yeol;Kim, Seon-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.377-377
    • /
    • 2014
  • We demonstrate the high temperature-dependent electrical behavior at 2D multilayer MoS2 transistor. Our previous reports explain that the extracted field-effect mobility of good device was inversely proportional to the increase of temperature. Because scattering mechanism is dominated by phonon scattering at a well-designed MoS2 transistor, having, low Schottky barrier. However, mobility at an immature our $MoS_2$ transistor (${\mu}m$ < $10cm^2V^{-1}s^{-1}$) is proportional to the increase temperature. The existence of a big Schottky barrier at $MoS_2-Ti$ junction can reduce carrier transport and lead to lower transistor conductance. At high temperature (380K), the field-effect mobility of multilayer $MoS_2$ transistor increases from 8.93 to $16.9cm^2V^{-1}sec^{-1}$, which is 2 times higher than the value at room temperature. These results demonstrate that carrier transport at an immature $MoS_2$ with a high Schottky barrier is mainly affected by thermionic emission over the energy barrier at high temperature.

  • PDF

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

Carrier Trap Characteristics varying with insulator thickness of MIS device (MIS소자의 절연막 두께 변화에 따른 캐리어 트랩 특성)

  • 정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.800-803
    • /
    • 2002
  • The MONOS capacitor are fabricated to investigate the carrier trapping due to Fowler-Nordheim tunneling injection. The carrier trapping in scaled multi-dielectric(ONO) depends on the nitride and Op oxide thickness under Fowler_Nordheim tunneling injection. Carriers captured at nitride film could not escape from nitride to gate, but be captured at top oxide and nitride interface traps because of barrier height of top oxide. Therefore, it is expected that the MONOS memory devices using multi dielectric films enhance memory effect and have a long memory retention characteristic.

  • PDF

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

  • Tun, Temdara;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [$^3H$]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter.