In this study, AlN powder of fine particle size and of high purity was synthesized by the carbothermal reduction-nitridation of monodisperse, spherical Al(OH)3 which had been prepared by sol-gel method using Al(O-sec-C4H9)3 as the starting material. Depending on the mixing order and kinds of reducing agents, the optimum condition for the preparation of AlN was determined as follows. AlN single-phase was produced by the carbothermal reduction-nitridation of (1) Benzene-washed Al(OH)3 and the reducing agent, carbon, which was mixed in a ball mill: for 5 hours at 140$0^{\circ}C$ under NH3 atmosphere; (2) The mixture prepared by hydrolysis of alkoxide solution into which carbon had been dispersed beforehand: for 5 hours at 135$0^{\circ}C$ ; (3) Al(OH)3 Poly(furfuryl alcohol) composite powder: for 2.5 hours at 135$0^{\circ}C$; (4) The mixture of Al(OH)3 and polyacrylonitrile: for 5 hours at 140$0^{\circ}C$. Addition of CaF2 increased the nitridation rate when carbon or polyacrylonitrile was used as the reducing agent; but it had no effect on the nitridation rate when furfuryl alcohol was used as the reducing agent.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.27
no.5
/
pp.223-228
/
2017
Aluminum nitride (AlN) powder was successfully synthesized at low temperature via carbothermal reduction and nitridation (CRN) assisted by microwave heating. The synthesis processes of AlN powder were investigated with X-ray diffraction, FE-SEM, FT-IR and TGA/DSC. Aluminum nitrate was used as an oxidizer and aluminum source, urea as fuel, and glucose as carbon source. These starting materials were mixed with D.I water and reacted in a flask at $100^{\circ}C$ for 20 minutes. After the reaction was finished, black foamy intermediate product was formed, which was considered to be an amorphous $Al_2O_3$ particles through intermediate product obtained by solution combustion synthesis (SCS) at the results of X-ray diffraction patterns and FT-IR. This intermediate product was nitridated at temperatures of $1300^{\circ}C$ and $1400^{\circ}C$ in $N_2$ atmosphere by a microwave heating furnace and then decarbonated at $600^{\circ}C$ for 2 hours in air. It should be noticed from FE-SEM images that as nitridated particles, identified as AlN from X-ray diffraction patterns, are covered with carbon residues. After decarbonating the nitridated powders, the spherical pure AlN powders were obtained without alumina and their particle sizes were dependent on the nitridating temperature with high temperature of $1400^{\circ}C$ giving large particles of around 70~100 nm.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.30
no.7
/
pp.441-446
/
2017
Aluminum nitride fibers were synthesized by carbothermal reduction and nitridation of precursor fibers obtained by electrospinning. The starting materials used to synthesize the AlN fibers were $Al(NO_3)_3{\cdot}9H_2O$ and urea. Polyvinylpyrrolidone with increasing viscidity was used as the carbon source to obtain a composite solution. The mixed solution was drawn into a plastic syringe with a stainless steel needle, which was used as the spinneret and connected to a 20 kV power supply. A high voltage was supplied to the solution to facilitate the formation of a dense net of fibers on the collector. The precursor fibers were dried at $100^{\circ}C$ and then heated to $1,400^{\circ}C$ for 1 h in a microwave furnace under $N_2$ gas flow for the carbothermal reduction and nitridation. X-ray diffraction studies indicated that the synthesized fibers consisted of the AlN phase. Field emission scanning electron microscopy studies indicated that the diameter of the calcined fibers was approximately 100 nm.
Fine powders of amorphous $Al_2O_3,\;SiO_2,\;Al_2O_3-SiO_2$ system were prepared by hydrolysis of solutions containing alkoxides, aluminium tri-isopropoxide and silicon tetra-ethoxide. High purity ultrafine ${\beta}-sialon$ powders were prepared by the carbothermal reduction-nitridation of amorphous $Al_2O_3-SiO_2$ powders mixed with carbon black as a reducing agent. In the hydrolysis step the effect of the factors such as pH, reaction temperature and amount of water on the conversion rate of alkoxides to oxides was investigated. In the carbothermal reduction-nitridation the reaction path was assumed by the analysis of intermediates formed in the process of ${\beta}-sialon$ synthesis and the reaction kinetics of ${\beta}-sialon$ formation was considered.
Lee, Sung Hoon;Kim, Jong Su;Kang, Tae Wook;Ryu, Jong Ho;Lee, Sang Nam
Journal of the Semiconductor & Display Technology
/
v.16
no.4
/
pp.11-15
/
2017
Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.
AlN powder was synthesized by carbothermal reduction and nitridation of aluminum hydroxides precipitated in 5∼11 pH range from Al2(SO4)3$.$18H2O aqueous solution. Nitridation reactivity of hydroxide, which depends on precipitation pH, reaction temperature and time, was examined by XRD analysis at 1200∼1350$^{\circ}C$ and compared with that of commercial ${\alpha}$-Al2O3. Hydroxides obtained at higher pH could be more easily nitridated and, considering DTA/TG and BET results, the reason seems to be specific surface area difference of reactants depending on the content of decomposed structural water and the transition rate from transition-Al2O3 to ${\alpha}$-Al2O3.
Aluminum nitride (AlN) powders and whiskers were synthesized by a modified carbothermal reduction and nitridation where a ($NH_4)[Al(ethylenediaminetetraacetate)]{\cdot}2H_2O$ complex is used as precursor. The AlN powders were obtained by calcining the complex without mixing any carbon source under a flow of nitrogen in the temperature range 1200∼1500$^{\circ}$C and then burning out the residual carbon. The nitridation process was investigated by $^{27}Al$ magic-angle spinning (MAS) unclear magnetic resonance, infrared spectroscopy and X-ray diffraction. The complex is pyrolyzed, converted to ${\rho}$- and ${\gamma}$- alumina and then nitridated to AlN without ${\gamma}-{\alpha}$ alumina transition. The morphology of ${\gamma}$-alumina, when it was converted to AlN, was retained, strongly indicating that ${\gamma}$-alumina is converted to AlN through solid-state $AlO_xN_y$, not through gaseous intermediates such as aluminum and aluminaum suboxides. AlN whiskers were obtained, when a (0001) sapphire was used as a catalyst.
β'-Sialon with different compositions was synthesized by the carbothermal reduction-nitridation of compacts containing kaolin graphite and silicon or aluminum at temperature of 1300-1450℃ under flowing gas of 90% N2-10% H2 or 20hrs. Quantitative analysis of minerals which were formed in the specimens was carried out by using the calibration curve which has been prepared from X-ray diffraction patterns. The obtained results were as follows : 1. In the formation of β'-Sialon by carbothermal reduction-nutridation of Si-Al-O-C system mixtures at 1400℃ for 20hrs. (2) β'-Sialon as a major mineral and α-Al2O3 as a minor mineral were identified in the specimen which was prepared of kaolin and graphite. (3)α-Al2O3 and 15R as a minor minerals were measured in the specimen which was prepared of kaolin aluminum and graphite. (4) AlN instead of α-Al2O3 and 15R was formed in the compacts that excess graphite(=35 wt%) was added to the mixture of kaolin and aluminium. 2. As the reaction time and temperature were increased the formation of β'-Sialon was increased whereas the phases of mllite SiC and Si2ON2 were decreased gradually.
Synthesis of $\beta$-Sialon powder was attempted with carbothermal reduction of porous glass. The porous glass was prepared by heat and hydrothermal treatments of 9.32 Li2O.46.5B2O3.37.2SiO2.6.98Al2O3 glass. Carbon pyrolyzed from propane gas was deposited on the porous glass, thereafter activated carbon was added as reducing agents. The synthesized $\beta$-Sialon powder was pressureless sintered at 175$0^{\circ}C$ for 1hr in N2 atmosphere. The characterization of the $\beta$-Sialon powder was performed with XRD, BET, SEM and particle size analysis. The sinterability and mechanical properties of the sintered bodies were investigated in terms of bulk density, M.O.R., fracture toughness, morphology of microstructure and etc. The reduction effect of deposited carbon was better than that of activated carbon mechanically added. The formation of SiC was precominant over that of Si2ON2 and $\beta$-Sialon owing to low partial pressure of N2 inside the pore, wehreas on the surface of porous glass the formation of Si2ON2 and $\beta$-Sialon were predominant. Thereafter, SiC reduced unreacted glass to be $\beta$-Sialon. Single phase of $\beta$-Sialon(Z=1.92) was obtained from PGA porous glass having the largest pore radius by the simultaneous reduction and nitridation method at 145$0^{\circ}C$ for 5hrs. The bulk density, M.O.R., and KIC of the sitered body are 3.17g/cc, 434.4MPa and 4.1MPa.m1/2, respectively.
AlN powder was synthesized by carbothermal reduction and nitridation using Al2(SO4)3.18H2O as the starting material. The synthesized AlN powder was fine but contained oxygen. Therefore carbonaceous material (carbon black or phenol novolac) was added teogether with the sintering aids (CaO, CaF2, CaCl2, Y2O3 and YF3). It was found that pressureless sintering at 1700~180$0^{\circ}C$ after deoxidation at 150$0^{\circ}C$ suppressed the formation of second phase (27R) and reduced the contents of lattice oxygen within AlN ceramics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.