DOI QR코드

DOI QR Code

Synthesis and Characterization of Fiberous AlN by Electrospinning

전기방사에 의한 섬유상 질화알루미늄 합성 및 특성 평가

  • Received : 2017.05.15
  • Accepted : 2017.06.01
  • Published : 2017.07.01

Abstract

Aluminum nitride fibers were synthesized by carbothermal reduction and nitridation of precursor fibers obtained by electrospinning. The starting materials used to synthesize the AlN fibers were $Al(NO_3)_3{\cdot}9H_2O$ and urea. Polyvinylpyrrolidone with increasing viscidity was used as the carbon source to obtain a composite solution. The mixed solution was drawn into a plastic syringe with a stainless steel needle, which was used as the spinneret and connected to a 20 kV power supply. A high voltage was supplied to the solution to facilitate the formation of a dense net of fibers on the collector. The precursor fibers were dried at $100^{\circ}C$ and then heated to $1,400^{\circ}C$ for 1 h in a microwave furnace under $N_2$ gas flow for the carbothermal reduction and nitridation. X-ray diffraction studies indicated that the synthesized fibers consisted of the AlN phase. Field emission scanning electron microscopy studies indicated that the diameter of the calcined fibers was approximately 100 nm.

Keywords

References

  1. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids, 48, 641 (1987). [DOI: https://doi.org/10.1016/0022-3697(87)90153-3]
  2. L. M. Sheppard, Am. Ceram. Soc. Bull., 69, 1801 (1990).
  3. Z. X. Ma, Y. L. Han, N. Wang, W. N. Liu, and Y. W. Liu, Adv. Mat. Res., 833, 165 (2014).
  4. G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Composites Part A, 37, 727 (2006). [DOI: https://doi.org/10.1016/j.compositesa.2005.07.006]
  5. J. H. Hong and S. E. Shim, Appl. Chem. Eng., 21, 115 (2010).
  6. V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, Chem. Rev., 111, 5179 (2011). [DOI: https://doi.org/10.1021/cr100156x]
  7. R. Li, W. Hu, Y. Liu, and D. Zhu, Acc. Chem. Res., 43, 529 (2010). [DOI: https://doi.org/10.1021/ar900228v]
  8. H. Qu, S. Wei, and Z. Guo, J. Mater. Chem. A, 1, 11513 (2013). [DOI: https://doi.org/10.1039/c3ta12390a]
  9. L. Xia, Z. Wei, and M. Wan, J. Colloid Interface Sci., 341, 1 (2010). [DOI: https://doi.org/10.1016/j.jcis.2009.09.029]
  10. I. Y. Goryacheva, E. S. Speranskaya, V. V. Goftman, D. Tang, and S. D. Saeger, Trends Anal. Chem., 66, 53 (2015). [DOI: https://doi.org/10.1016/j.trac.2014.11.008]
  11. T. M. Hsieh, A.C.A. Wan, and J. Y. Ying, MRS Bull., 36, 990 (2011). [DOI: https://doi.org/10.1557/mrs.2011.268]
  12. H. Liu, X. Ding, G. Zhou, P. Li, X. Wei, and Y. Fan, J. Nanomater., 2013, 3 (2013). [DOI: http://dx.doi.org/10.1155/2013/495708]
  13. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003). [DOI: https://doi.org/10.1016/S0266-3538(03)00178-7]
  14. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interface Sci., 8, 64 (2003). [DOI: https://doi.org/10.1016/S1359-0294(03)00004-9]
  15. J. Zeleny, Phys. Rev., 10, 1 (1917). [DOI: https://doi.org/10.1103/PhysRev.10.1]
  16. X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Sarnuelson, Nano Lett., 2, 1273 (2002). [DOI: https://doi.org/10.1021/nl020216u]
  17. A. R. Phani, R. D. Britto, and S. Srinivasan, Int. J. Environ. Res. Dev., 4, 375 (2014).
  18. H. S. Wang, G. D. Fu, and X. S. Li, Recent Pat. Nanotechnol., 3, 21 (2009). [DOI: http://dx.doi.org/10.2174/187221009787003285]
  19. T. Jaroszczyk, S. Petrik, and K. Donahue, Proc. the 4th Biennial Conference on Emissions Solutions in Transportation (AFS, Michgan, USA, 2009).
  20. N. Khan, SURG, 5, 63 (2012).
  21. Y. Lei, H. Li, H. Pan, and S. Han, J. Phys. Chem. A, 107, 1574 (2003). [DOI: https://doi.org/10.1021/ jp026638+]
  22. A. Chu, M. Qin, Rafi-ud-din, B. Jia, H. Lu, and X. Qu, J. Alloys Compd., 530, 144 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2011.12.133]
  23. M. M. Munir, A. B. Suryamas, F. Iskandar, and K. Okuyama, Polymer, 50, 4935 (2009). [DOI: https://doi.org/10.1016/j.polymer.2009.08.011]