• Title/Summary/Keyword: Carbon-11

Search Result 2,201, Processing Time 0.032 seconds

Effect of Several Physicochemical Factors on the Biodegradation of Acrylamide by Pseudomonas sp. JK-7 Isolated from Paddy Soil (논 토양에서 분리한 Pseudomonas sp. JK-7에 의한 Acrylamide의 생분해에 영향을 미치는 물리화학적 요인)

  • 천재우;호은미;오계헌
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • The purpose of this work was to investigate the relationships between acrylamide degradation by Pseudomonas sp. JK-7 and several relevant physicochemical environment parameters. In initial experiments, the bacterial culture, strain JK-7 isolated from paddy soil sample was developed to grow aerobically with acrylamide as the sole source of carbon and nitrogen. The bacterium was identified as genus Pseudomonas in the basis of use BIOLOG test, and designated as Pseudomunas sp. JK-7. Strain JK-7 could degrade 50 mM acrylamide completely within 72 hours of incubation. Major intermediates resulting from acrylamide degradation were not detected with the HPLC methodology except acrylic acid which appeared to accumulate transiently in the growth medium. The pH increased from 7.0 to 8.7 with complete degradation of the initial 50 mM acrylamide within 72 hours of incubation. pH control in the range of 5 to 9 influenced the growth of JK-7 and acrylamide degradation, whereas it was not examined the growth and degradation at pH 3 or pH 11, respectively. The effect of supplemented carbons (e.g., glucose, fructose, citrate, succinate) on the acrylamide degradation by the test culture of JK-7 was evaluated. The results indicated that the addition of carbons accelerated the bacterial growth and acrylamide degradation compared to those in the absence of supplemented carbons. The effect of supplemented nitrogens on the degradation was monitored. Increasing concentrations of yeast extract resulted in higher growth yield, based on the turbidity measurement, and complete degradation of acrylamide. However, acrylamide degradation was essentially uninfluenced by the addition of $(NH_{4})_{2}SO_{4}$, $NH_4Cl$ or urea. Addition of $AgNO_3$, $CuSO_4$ or $HgCl_2$ except $ZnSO_4$ in the test culture inhibited the degradation of acrylamide and growth of JK-7.

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

Optimization of Medium Components using Response Surface Methodology for Cost-effective Mannitol Production by Leuconostoc mesenteroides SRCM201425 (반응표면분석법을 이용한 Leuconostoc mesenteroides SRCM201425의 만니톨 생산배지 최적화)

  • Ha, Gwangsu;Shin, Su-Jin;Jeong, Seong-Yeop;Yang, HoYeon;Im, Sua;Heo, JuHee;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.861-870
    • /
    • 2019
  • This study was undertaken to establish optimum medium compositions for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425 isolated from kimchi. L. mesenteroides SRCM21425 from kimchi was selected for efficient mannitol production based on fructose analysis and identified by its 16S rRNA gene sequence, as well as by carbohydrate fermentation pattern analysis. To enhance mannitol production by L. mesenteroides SRCM201425, the effects of carbon, nitrogen, and mineral sources on mannitol production were first determined using Plackett-Burman design (PBD). The effects of 11 variables on mannitol production were investigated of which three variables, fructose, sucrose, and peptone, were selected. In the second step, each concentration of fructose, sucrose, and peptone was optimized using a central composite design (CCD) and response surface analysis. The predicted concentrations of fructose, sucrose, and peptone were 38.68 g/l, 30 g/l, and 39.67 g/l, respectively. The mathematical response model was reliable, with a coefficient of determination of $R^2=0.9185$. Mannitol production increased 20-fold as compared with the MRS medium, corresponding to a mannitol yield 97.46% when compared to MRS supplemented with 100 g/l of fructose in flask system. Furthermore, the production in the optimized medium was cost-effective. The findings of this study can be expected to be useful in biological production for catalytic hydrogenation causing byproduct and additional production costs.

Location Environment and Vegetation Structure of the Aconitum austrokoreense Habitat (세뿔투구꽃 서식지의 입지환경 및 식생구조)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • Owing to the lack of consistent research on endangered plant species in Korea, there are insufficient data to preservespecies and expand habitats. This study analyzed the preferred habitat and threats to the survival of Aconitum austrokoreense, found on Baekwun Mountain in Gurye-gun, Gwangyang-si, Jeollanam-do Province, and classified as a level two endangered wild plant by the Ministry of Environment, by investigating major environmental factors such as climate, location, soil, and stand structure. By examining five selected sites inhabited by Aconitum austrokoreense on BaekwunMountain, this study found that the habitat had an altitude of 420 to 675 m above sea level and showed a northeast tendency, spreading over a range of inclination angles between 15° and 37°. The average number of plants across the five sites was 156. Site 4 (550 m) had the highest density of 372 plants, with an average height of 0.6 m. The average soil moisture and relative light intensity were 20.48% and 7.34%, respectively. Layer soil was presumed to be sandy loam, characterized by high sand content and good drainage. The habitat had average soil pH of 5.2, average organic matter of 16.46%, average nitrogen of 0.86%, average available phosphate of 11.86 mg/kg, average electrical conductivity of 0.44 dS/m, and average cation exchange capacity of 37.04 cmolc/kg. The total carbon in soil averaged 10.68%. From the analysis of the vegetation structure of sites inhabited by Aconitum austrokoreense, the dominant populations were Pinus koraiensis and Lindera erythrocarpa in Site 1, Magnolia obovata and Carpinus laxiflora in Site 2, Zelkova serrate and Quercus variabilis in Site 3, Staphylea bumalda and Lindera erythrocarpa in Site 4, and Morus bombycis,Styrax japonicus, and Carpinus laxiflora in Site 5. With most habitats located near trails and sap collection sites of Acer pictum, the species were exposed to artificial damage and interference threats.

Establishment of Safety Factors for Determining Use-by-Date for Foods (식품의 소비기한 참고치 설정을 위한 안전계수)

  • Byoung Hu Kim;Soo-Jin Jung;June Gu Kang;Yohan Yoon;Jae-Wook Shin;Cheol-Soo Lee;Sang-Do Ha
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.528-536
    • /
    • 2023
  • In Korea, from January 2023, the Act on Labeling and Advertising of Food was revised to reflect the use-by-date rather than the sell-by-date. Hence, the purpose of this study was to establish a system for calculating the safety factor and determining the recommended use-by-date for each food type, thereby providing a scientific basis for the recommended use-by-date labels. A safety factor calculation technique based on scientific principles was designed through literature review and simulation, and opinions were collected by conducting surveys and discussions including industry and academia, among others. The main considerations in this study were pH, Aw, sterilization, preservatives, packaging for storage improvement, storage temperature, and other external factors. A safety factor of 0.97 was exceptionally applied for frozen products and 1.0 for sterilized products. In addition, a between-sample error value of 0.08 was applied to factors related to product and experimental design. This study suggests that clearly providing a safe use-by-date will help reduce food waste and contribute to carbon neutrality.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Studies on a Factor Affecting Composts Maturity During Composting of SWine Manure (돈분 퇴비화 중 부숙도에 미치는 영향인자 구명)

  • Kim, T.I.;Song, J. I.;Yang, C.B.;Kim, M.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.261-272
    • /
    • 2004
  • This study was conducted to investigate indices affecting composts maturity for swine manure compost produced in a commercial composting facility with air-forced from the bottom. The composting was made of swine manure mixed with puffing rice hull(6: 4) and turned by escalating agitator twice a day. Composting samples were collected periodically during a 45-d composting cycle at that system, showing that indices of Ammonium-N to Nitrate-N ratio were sensitive indicators of composting quality. Pile temperature maintained more than 62$^{\circ}C$ and water contents decreased about 20% for 25days of composting. A great variety and high numbers of aerobic thermophilic heterotropic microbes playing critical roles in stability of composts have been examined in the final composts, sbowing that they were detected $10^8$ to $10^{10}$ $CFUg^{-1}$ in mesophilic bacteria, $10^3$ - $10^4$ in fungi and $10^6$ - $10^8$ in actinomycetes, respectively. The results of this study for detennining a factor affecting compost stability evaluations based on composting steps were as follows; 1. Ammonium-N concentrations were highest at the beginning of composting, reaching approximately 421mg/kg. However Ammonium-N concentrations were lower during curing, reaching approximately l04mg/kg just after 45 day. The ratio between $NH_4-N$ and $NO_3-N$ was above II at the beginning of composting and less than 2 at the final step(45 day). 2. Seed germination Index was dependent upon the compost phytotoxicity and its nutrition. The phytotocity caused the GI to low during the period of active composting(till 25 days of composting time) depending on the value of the undiluted. After 25 days of composting time, the GI was dependent upon compost nutrition. The Gennination index of the final step was calculated at over 80 without regard to treatments. 3. E4: E6 ratio in humic acid of composts was correlatively decreased from 8.86 to 6.76 during the period of active composting. After 25 days of composting time, the E4: E6 was consistently decreased from 6.76 to 4.67($r^2$ of total composting period was 0.95). 4. Water soluble carbon had a tendency to increase from 0.54% to 0.78%during the period of active composting. After 25 days of composting time, it was consistently decreased from 0.78% to 0.42%. Water soluble nitrogen increased from 0.22% to 0.32% during the period of 15 days after initial composting while decreased from 0.32% to 0.21% after 15days of composting. In consequence, the correlation coefficient($r^2$) between water soluble carbon and water soluble nitrogen was 0.12 during the period of active composting mule was 0.50 after 25 days of composting time

Comparison of Single-Breath and Intra-Breath Method in Measuring Diffusing Capacity for Carbon Monoxide of the Lung (일산화탄소 폐확산능검사에서 단회호흡법과 호흡내검사법의 비교)

  • Lee, Jae-Ho;Chung, Hee-Soon;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.555-568
    • /
    • 1995
  • Background: It is most physiologic to measure the diffusing capacity of the lung by using oxygen, but it is so difficult to measure partial pressure of oxygen in the capillary blood of the lung that in clinical practice it is measured by using carbon monoxide, and single-breath diffusing capacity method is used most widely. However, since the process of withholding the breath for 10 seconds after inspiration to the total lung capacity is very hard to practice for patients who suffer from cough, dyspnea, etc, the intra-breath lung diffusing capacity method which requires a single exhalation of low-flow rate without such process was devised. In this study, we want to know whether or not there is any significant difference in the diffusing capacity of the lung measured by the single-breath and intra-breath methods, and if any, which factors have any influence. Methods: We chose randomly 73 persons without regarding specific disease, and after conducting 3 times the flow-volume curve test, we selected forced vital capacity(FVC), percent of predicted forced vital capacity, forced expiratory volume within 1 second($FEV_1$), percent of forced expiratory volume within 1 second, the ratio of forced expiratory volume within 1 second against forced vital capacity($FEV_1$/FVC) in test which the sum of FVC and $FEV_1$ is biggest. We measured the diffusing capacity of the lung 3 times in each of the single-breath and intra-breath methods at intervals of 5 minutes, and we evaluated which factors have any influence on the difference of the diffusing capacity of the lung between two methods[the mean values(ml/min/mmHg) of difference between two diffusing capacity measured by two methods] by means of the linear regression method, and obtained the following results: Results: 1) Intra-test reproducibility in the single-breath and intra-breath methods was excellent. 2) There was in general a good correlation between the diffusing capacity of the lung measured by a single-breath method and that measured by the intra-breath method, but there was a significant difference between values measured by both methods($1.01{\pm}0.35ml/min/mmHg$, p<0.01) 3) The difference between the diffusing capacity of the lung measured by both methods was not correlated to FVC, but was correlated to $FEV_1$, percent of $FEV_1$, $FEV_1$/FVC and the gradient of methane concentration which is an indicator of distribution of ventilation, and it was found as a result of the multiple regression test, that the effect of $FEV_1$/FVC was most strong(r=-0.4725, p<0.01) 4) In a graphic view of the difference of diffusing capacity measured by single-breath and intra-breath method and $FEV_1$/FVC, it was found that the former was divided into two groups in section where $FEV_1$/FVC is 50~60%, and that there was no significant difference between two methods in the section where $FEV_1$/FVC is equal or more than 60% ($0.05{\pm}0.24ml/min/mmHg$, p>0.1), but there was significant difference in the section, less than 60%($-4.5{\pm}0.34ml/min/mmHg$, p<0.01). 5. The diffusing capacity of the lung measured by the single-breath and intra-breath method was the same in value($24.3{\pm}0.68ml/min/mmHg$) within the normal range(2%/L) of the methane gas gradient, and there was no difference depending on the measuring method, but if the methane concentration gradients exceed 2%/L, the diffusing capacity of the lung measured by single-breath method became $15.0{\pm}0.44ml/min/mmHg$, and that measured by intra-breath method, $11.9{\pm}0.51ml/min/mmHg$, and there was a significant difference between them(p<0.01). Conclusion: Therefore, in case where $FEV_1$/FVC was less than 60%, the diffusing capacity of the lung measured by intra-breath method represented significantly lower value than that by single-breath method, and it was presumed to be caused largely by a defect of ventilation-distribution, but the possibility could not be excluded that the diffusing capacity of the lung might be overestimated in the single-breath method, or the actual reduction of the diffusing capacity of the lung appeared more sensitively in the intra-breath method.

  • PDF