DOI QR코드

DOI QR Code

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes

탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가

  • Moon, Changho (Department of Oceanography, Pukyong National University) ;
  • Park, Hyun Je (School of Environmental Science and Engineering, Gwangju Institute of Science and Techonology) ;
  • Yun, Sung Gyu (Division of Science Education, Daegu University) ;
  • Kwak, Jung Hyun (School of Environmental Science and Engineering, Gwangju Institute of Science and Techonology)
  • 문창호 (부경대학교 해양학과) ;
  • 박현제 (광주과학기술원 환경공학부) ;
  • 윤성규 (대구대학교 과학교육학부) ;
  • 곽정현 (광주과학기술원 환경공학부)
  • Received : 2014.08.18
  • Accepted : 2014.09.01
  • Published : 2014.11.28

Abstract

To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

2008년 4월에서 2009년 1월 사이에 진동만 미더덕의 섭식 생태를 설명하기 위하여 $20{\mu}m$ 이상(coarse particulate organic matter, CPOM) 그리고 $0.7{\mu}m$ 이상 $20{\mu}m$ 이하(fine POM)의 크기가 나누어진 각각의 부유입자유기물과 미더덕에 대한 ${\delta}^{13}C$${\delta}^{15}N$ 값의 월별 변동을 비교 분석하였다. CPOM과 FPOM의 ${\delta}^{13}C$${\delta}^{15}N$을 월별로 비교한 결과 전체적으로 CPOM(평균 $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰)이 FPOM(평균 $-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰)에 비해 유의하게 높은 값을 나타내었다. 미더덕의 ${\delta}^{13}C$${\delta}^{15}N$ 값은 각각 평균 $-18.9({\pm}1.7)$‰과 $11.6({\pm}0.7)$‰로 나타났는데, 이와 같은 비값들은 CPOM 보다는 FPOM의 월별 변동과 비슷한 경향을 보여 이들이 CPOM에 비하여 상대적으로 FPOM에 더 높은 영양 의존도를 가진다는 것을 강하게 시사해 주었다. 그러나 미더덕의 먹이원으로서 CPOM과 FPOM의 상대적인 중요성은 시기에 따른 각 요소의 가용성(availability)에 크게 의존하는 것으로 나타났는데, 이와 같은 결과는 부유입자물질의 크기에 관계없이 미더덕에 의한 비선택적 먹이 섭식을 잘 반영하는 듯 하였다. 본 연구 결과는 미더덕의 지속적인 양식생산을 유지하기 위해 가용 먹이원으로서 식물플랑크톤과 함께 미소 부유입자유기물의 유용성을 고려해야함을 잘 나타내 주었다.

Keywords

References

  1. Bone , Q., C. Carre and P. Chang, 2003. Tunicate feeding filter. J. Mar. Biol. Assoc. U.K., 83: 907-919. https://doi.org/10.1017/S002531540300804Xh
  2. Bourque, D., J. Davidson, N.G. MacNair, G. Arsenault, A.R LeBlanc, T. landry and G. Miron, 2007. Reproduction and early life history of the invasive ascidian Styela clava Herdmanin Prince Edward Island, Canada. J. Exp. Mar. Biol. Ecol., 342: 78-84. https://doi.org/10.1016/j.jembe.2006.10.017
  3. Cifuentes, L.A., J.H. Sharp and M.L. Fogel, 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol. Oceanogr., 33: 1102-1115. https://doi.org/10.4319/lo.1988.33.5.1102
  4. Courties, C., A. Vaquer, M. Troussellier, J. Lautier and others, 1994. Smallest eukaryotic organism. Nature, 370: 255
  5. Davis, M.H. and M.E. Davis, 2008. First record of Styela clava (Tunicate, Ascidiacea) in the Mediterranean region. Aqua. Invasions, 3, 125-132. https://doi.org/10.3391/ai.2008.3.2.2
  6. Fry, B. and E.B. Sherr, 1984. ${\delta}^{13}C$ measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47.
  7. Fry, B., 1996. $^{13}C/^{12}C$ fractionation by marien diatoms. Mar. Ecol. Prog. Ser., 134: 283-294. https://doi.org/10.3354/meps134283
  8. Gearing, J.N., P.J. Gearing, D.T. Rundick, A.G. Requejo and M.J. Hutchins, 1984. Isotopic variability of organic carbon in a phytoplankton-based temperate estuary. Geochim. Cosmochim. Acta., 48: 1089-1098. https://doi.org/10.1016/0016-7037(84)90199-6
  9. Goering J., V. Alexander and N. haubenstock, 1990. Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific bay. Estuar. Coast. Shelf. Sci., 30: 239-260. https://doi.org/10.1016/0272-7714(90)90050-2
  10. Jiang, A.L., J.L. Guo, W.G. Cai and C.H. Wang, 2008a. Oxygen cosumption of the ascidian Styela clava in relation to body mass, temperature and salinity. Aquacul. Res., 39: 1562-1568. https://doi.org/10.1111/j.1365-2109.2008.02040.x
  11. Jiang, A.L., J. Lin and C.H. Wang, 2008b. Physiological energetics of the ascidian Styela clava in relation to body size and temperature. Comp. Biochem. Physiol. A, 149: 129-136. https://doi.org/10.1016/j.cbpa.2006.08.047
  12. Kang, C.K., E.J. Choy, W.C. Lee, N.J. Kim, H.J. Park and K.S. Choi, 2011. Physiological energetics and gross biochemical composition of the ascidian Styela clava cultured in suspension in a temperate bay of Korea. Aquacultre, 319: 168-177. https://doi.org/10.1016/j.aquaculture.2011.06.016
  13. Kang, C.K., E.J. Choy, Y.B. Hur and J.I. Myeong, 2009. Isotopic evidence of particle size-dependent food partitioning in cocultured sea squirt Halocynthia roretzi and Pacific oyster Crassostrea gigas. Aquat. Biol., 6: 289-302. https://doi.org/10.3354/ab00126
  14. Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee and J.S. Hong, 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser., 259: 79-92. https://doi.org/10.3354/meps259079
  15. Kim, D.S., K.D. Cho and C.K. Park, 2001. The oceanic environemental property in the Jindong Bay of the red-tide appearance area. J. Environ. Sci. 10: 159-166.
  16. Kim, D.S. and S.U. Kim, 2003. Mechanism of oxygen-deficient water formation in Jindong Bay. J. Korean Soc. Oceanogr., 8: 177-186.
  17. Michener, R.H. and D.M. Schell, 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RH (eds) Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, pp. 138-157.
  18. MIFAFF, 2012. Ministry for Food, Agriculture, Forestry and Fisheries. Fisheries information service. http;//www.fips.go.kr.
  19. Minagawa, M. and E. Wada, 1986. Nitrogen isotope ratios of red tide organisms in the East China Sea: a characterization of biological nitrogen fixation. Mar. Chem. 19: 245-259. https://doi.org/10.1016/0304-4203(86)90026-5
  20. Park, J., Y. Cho, W.C. Lee, S. Hong, H.C. Kim, J.B. Kim and J. Park, 2012. Characteristics of carbon circulation for ascidian farm in Jindong Bay in summer and winter. J. Korean Wetlands Soc., 14: 211-221.
  21. Pasquaud, S., J. Lobry and P. Elie, 2007. Facing the necessity of describing estuarine ecosystems: a review of food web ecology study techniques. Hydrobiologia, 588: 159-172. https://doi.org/10.1007/s10750-007-0660-3
  22. Peterson, B.J. and B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Rev. Ecol. Evol. Systym., 18: 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
  23. Peterson, J.K., 2007. Ascidian suspension feeding. J. Exp. Mar. Biol. Ecol., 342: 127-137. https://doi.org/10.1016/j.jembe.2006.10.023
  24. Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83: 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  25. Rau, G.H., J.L. Teyssie, F. Rassoulzadegan and S.W. Fowler, 1990. $^{13}C/^{12}C$ and $^{15}N/^{14}N$ variations among size-fractionated marine particles: implications for their origin and trophic relationships. Mar. Ecol. Prog. Ser., 59: 33-38. https://doi.org/10.3354/meps059033
  26. Riisgard, H.U. and P.S. Larsen, 2000. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge. J. Sea. Res., 44: 169-193. https://doi.org/10.1016/S1385-1101(00)00054-X
  27. Rolff, C., 2000. Seasonal variation in ${\delta}^{13}C$ and ${\delta}^{15}N$ of size-fractionated plankton at a coastal station in the northern Baltic proper. Mar. Ecol. Prog. Ser., 203: 47-65. https://doi.org/10.3354/meps203047
  28. Sato, T., T. Miyajima, H. Ogawa, Y. Umezawa and I. Koike, 2006. Temporal variability of stable carbon and nitrogen isotopic composition of size-fractionated particulate organic matter in the hypertrophic Sumida River estuary of Tokyo Bay, Japan. Estuar. Coast. Shelf. Sci., 68: 245-258. https://doi.org/10.1016/j.ecss.2006.02.007
  29. Thompson, B. and N. MacNair, 2004. An overview of the clubbed tunicate (Styela clava) in Prince Edward Island. PEI Department of Agriculture, Fisheries, aquaculture and Forestry Technical Report. 234, p. 29.
  30. Vander Zanden, M.J, and J.B. Rasmussen, 2001. Variation in $^{15}N$ and $^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46: 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061