Effect of Several Physicochemical Factors on the Biodegradation of Acrylamide by Pseudomonas sp. JK-7 Isolated from Paddy Soil

논 토양에서 분리한 Pseudomonas sp. JK-7에 의한 Acrylamide의 생분해에 영향을 미치는 물리화학적 요인

  • 천재우 (순천향대학교 자연과학대학 생명과학부) ;
  • 호은미 (순천향대학교 자연과학대학 생명과학) ;
  • 오계헌 (순천향대학교 자연과학대학 생명과학부)
  • Published : 2004.03.01

Abstract

The purpose of this work was to investigate the relationships between acrylamide degradation by Pseudomonas sp. JK-7 and several relevant physicochemical environment parameters. In initial experiments, the bacterial culture, strain JK-7 isolated from paddy soil sample was developed to grow aerobically with acrylamide as the sole source of carbon and nitrogen. The bacterium was identified as genus Pseudomonas in the basis of use BIOLOG test, and designated as Pseudomunas sp. JK-7. Strain JK-7 could degrade 50 mM acrylamide completely within 72 hours of incubation. Major intermediates resulting from acrylamide degradation were not detected with the HPLC methodology except acrylic acid which appeared to accumulate transiently in the growth medium. The pH increased from 7.0 to 8.7 with complete degradation of the initial 50 mM acrylamide within 72 hours of incubation. pH control in the range of 5 to 9 influenced the growth of JK-7 and acrylamide degradation, whereas it was not examined the growth and degradation at pH 3 or pH 11, respectively. The effect of supplemented carbons (e.g., glucose, fructose, citrate, succinate) on the acrylamide degradation by the test culture of JK-7 was evaluated. The results indicated that the addition of carbons accelerated the bacterial growth and acrylamide degradation compared to those in the absence of supplemented carbons. The effect of supplemented nitrogens on the degradation was monitored. Increasing concentrations of yeast extract resulted in higher growth yield, based on the turbidity measurement, and complete degradation of acrylamide. However, acrylamide degradation was essentially uninfluenced by the addition of $(NH_{4})_{2}SO_{4}$, $NH_4Cl$ or urea. Addition of $AgNO_3$, $CuSO_4$ or $HgCl_2$ except $ZnSO_4$ in the test culture inhibited the degradation of acrylamide and growth of JK-7.

논 토양에서 acrylamide의 분해능이 탁월한 세균 Pseudomonas JK-7를 분리하여 acrylamide의 생분해에 영향을 미치는 물리화학적 요인을 조사하였다. 초기 실험에서 acrylamide를 유일 탄소원과 질소원으로 하여 호기적 조건에서 생장할 수 있는 세균 JK-7을 논의 토양표본에서 분리하였다. BIOLOG system을 이용한 생리학적 분석으로 Pseudomonas속(genus)임을 확인하였고, 이 세균을 Pseudomonas sp. JK-7로 명명하였다. 분리 균주 JK-7은 50 mM acrylamide를 배양 72시간 이내에 완전히 분해하였다. 배양기간 중에 acrylamide 분해 중간대사 물질로서 acrylic acid가 나타나는 것을 HPLC를 통해 확인하였으며, 배양초기에 배양액에 존재하지 않았던 ammonia가 배양기간 중에 관찰되었다. 배양초기 pH는 7.0이었으나 acrylamide가 완전히 분해된 후 배양액의 최종 pH는 8.7이었다. Acrylamide 분해와 JK-7의 생장에 대한 pH의 영향을 조사한 결과, PH 5, pH 7 그리고 pH 9에서 생장과 분해가 이루어졌으나, pH3과 pH11에서는 거의 관찰되지 않았다. 부가 탄소원의 존재하에서 JK-7에 의한 acrylamide분해에서 glucose, fructose, citrate 또는 succinate를 각각 첨가하여 조사한 결과, 부가 탄소원이 없을 때보다 acrylamide분해와 JK-7의 생장은 가속화되었다. 또한 부가질소원 첨가에 따른 영향조사 실험에서, yeast extract는 acrylamide분해와 JK-7의 생장을 촉진시켰다. 그러나 다른 질소원인 $(NH_{4})_{2}SO_{4}$, $NH_4Cl$ 그리고urea는 생장과 분해에 본질적으로 큰 영향을 미치지 않았다. 금속이온에 대한 영향으로 배지내에 $ZnSO_{4}$를 첨가하였을 때 분해와 생장이 진행되었으나, $AgNO_{3}$, $CuSO_{4}$ 또는 $HgCl_{2}$를 첨가하였을 때 acrylamide분해와 JK-7의 생장이 이루어지지 않았다.

Keywords

References

  1. Mar. Chem. v.56 Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICES NUTS I/C 5 questionnaire Aminot,A.;D.S.Kirkwood;R.K.Crouel https://doi.org/10.1016/S0304-4203(96)00080-1
  2. J. Ind. Microbiol v.5 Isolation and characterization of acetonitrile utilizing bacteria Chapatwala,K.D.;M.S.Nawaz;J.D.Richardson;J.H.Wolfram https://doi.org/10.1007/BF01573854
  3. A review. J. Agric. Food Chem. v.51 Chemistry, biochemistry, and safety of Acrylamide Friedman,M. https://doi.org/10.1021/jf030204+
  4. Scand. J. Work Environ. Health v.27 Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkets of internal dose Hagmar,L.;M.Tornqvist;C.Nordander;I.Rosen;M.Bruze;A.Kautiainen;A.Magnusson;B.Malberg;P.Aprea;F.Graath;A.Axmon https://doi.org/10.5271/sjweh.608
  5. Environ. Toxicol. Pharmacol. v.7 Pharmacokinetics of acrylamide after oral administration in male rat Kadry,A.M.;M.A.Friedman;M.S.Abdel-Rahman https://doi.org/10.1016/S1382-6689(99)00005-8
  6. Agric. Biol. Chem. v.54 Purification and properties of an aromatic amidase from Pseudomonas sp. GDI 211 Kagayama,T.;T.Ohe. https://doi.org/10.1271/bbb1961.54.2565
  7. J. Microbiol. Biotechnol. v.10 Physiological and phylogenetic analysis of Burkholderia sp. HYI capable of aniline degradation Kahng,H.Y.;J.J.Kukor;K.H.Oh.
  8. Arch. Microbiol. v.156 Metabolism of acrylonitrile by Klebsiella pneumoniae Nawaz,M.S.;W.Franklin;W.L.Campbell;T.M.Heinze;C.E.Cerniglia
  9. Can. J. Microbiol v.39 Degradation of acriylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia Nawaz,M.S.;W.Franklin;C.E.Cerniglia https://doi.org/10.1139/m93-029
  10. Appl. Environ. Microbiol. v.60 Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Nawaz,M.S.;A.A.Khan;J.E.Seng;J.E.Leakey;P.H.Siltonen;C.E.Cerniglia
  11. Biodegradation v.9 Influence of selected physical parameters on the biodegradation fo acrylamide by immobilized cells of Rhodococcus sp. Nawaz,M.S.;S.M.Billedeau;C.E.Cerniglia https://doi.org/10.1023/A:1008383710019
  12. Nature v.419 Food chemistry: acrylamide is formed in the Maillard reaction Mottram.D.S.;B.L.Wedzicha;A.T.Dodson https://doi.org/10.1038/419448a
  13. Brit. J. Cancer v.88 Dietary acrylamide and cancer of the large bowel, kidney, and bladder: absence of an association in a population-based study in Sweden Mucci,L.A.;P.W.Dickman;G.Steineck;H.O.Adami;K.Augustsson https://doi.org/10.1038/sj.bjc.6600726
  14. J. Environ. Qual. v.8 Degradation and leaching of acrylamide in soil Lande,S.S.;S.J.Bosch;A.M.Abouzam https://doi.org/10.2134/jeq1979.00472425000800010029x
  15. Mutat. Res. v.516 Haemoglobin adducts and micronucleus frequencies in mouse and rat after acrylamide or N-methylolacrylamide treatment Paulsson,B.;J.Grawe;M.Tornqvist https://doi.org/10.1016/S1383-5718(02)00027-X
  16. Arch. Microbiol. v.154 Microbial degradation fo acrylamide monomer Sharker,R.;C.Ramakrishna;P.K.Sethi https://doi.org/10.1007/BF00423332
  17. Ecotoxicol. Environ. Saf. v.35 Environmental degradation of polyacrylamides I. Effects of artifical environmental conditions: temperature, light, and pH. Smith,E.A.;S.L.Prues;F.W.Oehme https://doi.org/10.1006/eesa.1996.0091
  18. Ecotoxicol. Environ. Saf. v.35 Environmental degradation of polyacrylamides II. Effects of artifical environmental (outdoor) exposure Smith,E.A.;S.L.Prues;F.W.Oehme https://doi.org/10.1006/eesa.1996.0091
  19. Nature v.43 Food chemistry: acrylamide from Maillard reaction products Stadler,R.I.Blank;N.Varga;F.Robert;J.Hau;P.Gay;M.Robert;S.Riediker https://doi.org/10.1038/043419a0
  20. Chem. Res. Toxicol. v.13 Acrylamide a cooking carcinogen? Tareke,E.;P.Rydberg;P.Karlsson;S.Eriksson;M.Tornqvist https://doi.org/10.1021/tx9901938
  21. Chemosphere v.44 Denitrification with acrylamide by pure culture of bacteria isolated from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system Wang,C.C.;C.M.Lee https://doi.org/10.1016/S0045-6535(00)00503-8