• 제목/요약/키워드: Carbon nanotube FET

검색결과 25건 처리시간 0.023초

탄소나노튜브 트랜지스터 특성 연구 (Characteristics of CNT Field Effect Transistor)

  • 박용욱;나상엽
    • 한국전자통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.88-92
    • /
    • 2010
  • 본 연구에서는 기존의 반도체 공정을 이용하여 bottom gate, top gate구조의 탄소나노튜브 트랜지스터를 제작하였다. 게이트 특성에 따른 특성을 연구하기 위하여 열화학 기상 증착법(CVD)으로 탄소나노튜브를 디바이스에 직접 성장시키고, 탄소나노튜브의 성장 특성 및 I-V동작 특성을 분석하였다. 제작된 탄소나노튜브 FET는 p-type, 즉 hole이 다수 캐리어로 존재하는 트랜지스터이며 구동전압에 따라 conductance 변화하는 특성을 보였다.

Characterization of Electrical Properties and Gating Effect of Single Wall Carbon Nanotube Field Effect Transistor

  • Heo, Jin-Hee;Kim, Kyo-Hyeok;Chung, Il-Sub
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.169-172
    • /
    • 2008
  • We attempted to fabricate carbon nanotube field effect transistor (CNT-FET) using single walled carbon nanotube(SWNT) on the heavily doped Si substrate used as a bottom gate, source and drain electrode were fabricated bye-beam lithography on the 500 nm thick $SiO_2$ gate dielectric layer. We investigated electrical and physical properties of this CNT-FET using Scanning Probe Microscope(SPM) and conventional method based on tungsten probe tip technique. The gate length of CNT-FET was 600 nm and the diameter of identified SWNT was about 4 nm. We could observed gating effect and typical p-MOS property from the obtained $V_G-I_{DS}$ curve. The threshold voltage of CNT-FET is about -4.6V and transconductance is 47 nS. In the physical aspect, we could identified SWNT with phase mode of SPM which detecting phase shift by force gradient between cantilever tip and sample surface.

Sensor Circuit Design using Carbon Nanotube FET for Artificial Skin

  • Kim, Yeon-Bo;Kim, Kyung Ki
    • 한국산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.41-48
    • /
    • 2014
  • This paper proposes a new sensor circuit using a 32 nm carbon nanotube FET (CNFET) technology for artificial skin. For future robotic and prosthetic applications, it is essential to develop a robust and low power artificial skin for detecting the environment through touch. Therefore, a sensor circuit for the artificial skin also has to be developed to detect the sensor signals and convert them into digital bits. The artificial skin sensor is based on a mesh of sensors consisting of a nxn matrix using CNFET, and the sensor outputs are connected to a current monitoring circuit proposed as the sensor circuit. The proposed sensor provides pressure measurements and shape information about pressure distribution.

The Memory Effects of a Carbon Nanotube Nanodevice

  • Lee Chi-Heon;Kim Ho-Gi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권4호
    • /
    • pp.26-29
    • /
    • 2003
  • To discover electrical properties of individual single wall nanotube(SWNT), a number of SWNT-based tubeFETs have been fabricated. The device consists of a single semiconducting SWNT on an insulating substrate, contacted at each end by metal electrodes. It presents high transconductances, and charge storage phenomenon, which is the operations of injecting electrons from the nanotube channel of a tubeFET into charge traps on the surface of the $SiO_2$ gate dielectric, thus shifting the threshold voltage. This phenomenon can be repeated many times, and maintained for the hundreds of seconds at room temperature. We will report this phenomenon as the memory effects of the SWNT, and attempt to use this property for the memory device.

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Lee, Nam Hee;Ko, Minsu;Choi, Insung S.;Yun, Wan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1035-1038
    • /
    • 2013
  • Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

더블 게이트 구조의 탄소 나노 튜브 트랜지스터 바이오 센서의 제작 (Fabrication of the CNT-FET biosensors with a double-gate structure)

  • 조병현;임병현;신장규;최성욱;전향숙
    • 센서학회지
    • /
    • 제18권2호
    • /
    • pp.168-172
    • /
    • 2009
  • In this paper, we present the carbon nanotube field-effect transistor(CNT-FET) with a double-gate structure. A Carbon nanotube film was aligned by the Langmuir-Blodgett technique and $SiN_x$ was deposited to protect from water, oxygen, and other contaminants. We measured the electrical characteristics of the proposed device as the function of the $V_{BG}$, $V_{TG}$. From this result, we can confirm that proposed device might be employed as a biosensor.

Electrokinetic deposition of individual carbon nanotube onto an electrode gap

  • Han Chang-Soo;Seo Hee-Won;Lee Hyung-Woo;Kim Soo-Hyun;Kwak Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.42-46
    • /
    • 2006
  • This paper presents a method for deposition an individual carbon nanotube (CNT). The alignment of a single CNT is very useful to perform studies related to applications in FET (Field Emitted Transistor), SET (Single Electron Transistor) and to make chemical sensor as well as bio sensors. In this study, we developed the deposition method of a CNT individualized in a solution. Using the electrokinetic method, we found the optimum conditions to assemble the nanotube and discussed about plausible explanation for the assembling mechanism. These results will be available to use for making the CNT sensor device.

Biologically-Inspired Selective and Sensitive Trinitrotoluene Sensors Using Conjugated Lipid-like Polymer Nanocoatings for CNT-FET Sensors

  • Jaworski, Justyn;Kim, Tae-Hyun;Yokoyama, Keisuke;Chung, Woo-Jae;Wang, Eddie;Lee, Byung-Yang;Hong, Seung-Hun;Majumdar, Arun;Lee, Seung-Wuk;Kwon, Ki-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.495-495
    • /
    • 2011
  • Miniaturized sensors capable of both sensitive and selective real-time monitoring of target analytes are tremendously valuable for various applications ranging from hazard detection to medical diagnostics. The wide-spread use of such sensors is currently limited due to insufficient selectivity for target molecules. We developed selective nanocoatings by combining trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) with single-walled carbon nanotube-field effect transistors (SWNT-FET). Selective binding events between TNT molecules and phage display derived TNT receptors were effectively transduced to sensitive SWNT-FET conductance sensors through the PDA coating. The resulting sensors exhibited unprecedented 1 fM sensitivity toward TNT in real time, with excellent selectivity over various similar aromatic compounds. Our biomimetic receptor coating approach may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

  • PDF

Microfabrication of Vertical Carbon Nanotube Field-Effect Transistors on an Anodized Aluminum Oxide Template Using Atomic Layer Deposition

  • Jung, Sunghwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1169-1173
    • /
    • 2015
  • This paper presents vertical carbon nanotube (CNT) field effect transistors (FETs). For the first time, the author successfully fabricated vertical CNT-based FETs on an anodized aluminum oxide (AAO) template by using atomic layer deposition (ALD). Single walled CNTs were vertically grown and aligned with the vertical pores of an AAO template. By using ALD, a gate oxide material (Al2O3) and a gate metal (Au) were centrally located inside each pore, allowing the vertical CNTs grown in the pores to be individually gated. Characterizations of the gated/vertical CNTs were carried and the successful gate integration with the CNTs was confirmed.