• Title/Summary/Keyword: Carbon nanomaterials

Search Result 170, Processing Time 0.029 seconds

A Study on the Morphology of Carbon Nanomaterials prepared by Thermal CVD on the Mechanochemical Treated Catalysts

  • Ryu, Ho-Jin;Yi, Hyung-Kyun;Saito, Fumio;Lee, Byuung-Il;Chang, Ho-Jung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.75-78
    • /
    • 2002
  • CNTs have been grown by the thermal CVD process in which $C_{2}H_{2}$ gas was deposited on the Fe - $Al(OH)_3$ mixture pretreated by mechanochemical treatment with a high energy mixer mill. As the duration time of grinding fer $Fe-(Al(OH)_3$ mixture by the mixer mill increased, amorphous $Al(OH)_3$ and more smaller Fe particles agglomerated into spheres. With unground and ground mixtures of $Fe-Al(OH)_3$, CNTs were grown at $700^{\circ}C$. As a result, CNTs grown on ground mixtures have more uniform diameter and morphology than those of unground mixture. The characterization of $Fe-Al(OH)_3$ mixture and as-grown CNTs were done by XRD, SEM and TEM.

  • PDF

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

Transparent Electrodes for Semitransparent Perovskite Solar Cells (반투명 페로브스카이트 태양전지용 투명전극 소재)

  • Lee, Phillip;Ko, Min Jae
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.74-80
    • /
    • 2018
  • Recently, perovskite solar cells have shown tremendous improvement in power conversion efficiencies. Moreover, they have potential in semitransparent solar cell applications due to their high absorption coefficients. In order to fabricate semitransparent perovskite solar cells with good performance, it is essential to consider the suitability of transparent electrode materials in various aspects, such as transparency, conductivity and fabrication process. In this review, candidate materials for transparent electrodes in perovskite solar cells including carbon-based nanomaterials, conductive polymers and metallic nanostructures are discussed.

Photo-triggered Theranostic Nanoparticles in Cancer Therapy

  • Abueva, Celine DG.
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • In cancer therapy, it is often desirable to use precision medicine that involves treatments of high specificity. One such treatment is the use of photo-triggered theranostic nanoparticles. These nanoparticles make it possible to visualize and treat tumors specifically in a controlled manner with a single injection. Several novel and powerful photo-triggered theranostic nanoparticles have been developed. These range from small organic dyes, semiconducting and biopolymers, to inorganic nanomaterials such as iron-oxide or gold nanoparticles, carbon nanotubes, and upconversion nanoparticles. Using photo-triggered theranostic nanoparticles and localized irradiation, complete tumor ablation can be achieved without causing significant toxicity to normal tissue. Given the great advances and promising future of theranostic nanoparticles, this review highlights the progress that has been made in the past couple of years, the current challenges faced and offers a future perspective.

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations (금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구)

  • Nde, Dieudonne Tanue;Lee, Ji Won;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.

Experimental Study on the Reological Properties of Carbon Nano Materials as Cement Composites (탄소계 나노소재를 적용한 시멘트 페이스트 복합체의 유변학적 특성에 대한 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.227-234
    • /
    • 2022
  • In this study, the rheological properties of cement paste composites applied with carbon-based nano-materials were experimental analyzed. Flow table and rheological properties, compressive strength were measured in the cement paste using graphene oxide asqueous solution and carbon nanotube aqueous solution. When carbon nano-materials was mixed in an aqueous solution, flow decreased and plastic viscosity and shear stress were increased. In particular, graphene oxide rapidly increased the plastic viscosity and shear stress. In the case of carbon nanotube aqueous solution, when less than 0.2 % was mixed, the increase rate was low compared to graphene oxide. This is because the specific surface area of graphene, which is in the form of a plate, is large. The compressive strength showed a small amount in strength increase when graphene mix, and CNT had a strength about 112 % of OPC. Carbon-based nanomaterials, is considered that CNT are suitable more to be used construction materials. However, extra studies on the surfactant to be used for mixing proportion and dispersion will be needed.

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.

Environmentally Friendly Preparation of Functional Nanomaterials and Their Application

  • Lee, Sun-Hyung;Teshima, Katsuya;Endo, Morinobu;Oishi, Shuji
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.5.1-5.1
    • /
    • 2010
  • One of the most important environmental problems is global warming. Global warming is caused by increase in the amounts of water vapor, methane, carbon dioxide and other gases being released into the atmosphere as a result of the burning of fossil fuels. It has thus become important to reduce fossil fuel use. Environmentally friendly preparation of functional materials has, therefore, attracted much interest for environmental problems. Furthermore, nature mimetic processes are recently been of great interest as environmentally friendly one. There have been many studies on fabrication of various functional nanocrystals. Among various nanocrystal fabrication techniques, flux growth is an environmentally friendly, very convenient process and can produce functional nanocrystals at temperatures below the melting points of the solutes. Furthermore, this technique is suitable for the synthesis of crystals having an enhedral habit. In flux growth, the constituents of the materials to be crystallized are dissolved in a suitable flux (solvent) and crystal growth occurs as the solution becomes critically supersaturated. The supersaturation is attained by cooling the solution, by evaporation of the solvent or by a transport process in which the solute is made to flow from a hotter to a cooler region. Many kinds of oxide nanocrystals have been grown in our laboratory. For example, zero- (e.g., particle), one- (e.g., whisker and tube) and two-dimensional (e.g., sheet) nanocrystals were successfully grown by flux method. Our flux-growth technique has some industrial and ecological merits because the nanocrystal fabrication temperatures are far below their melting points and because the used reagents are less harmless to human being and the environment.

  • PDF

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials (직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구)

  • Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.