• Title/Summary/Keyword: Carbon ion

검색결과 1,242건 처리시간 0.027초

Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Oh, Si-Hyung;Jang, Ho;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.836-840
    • /
    • 2011
  • This study examines the effects of a carbon coating on the electrochemical performances of $LiFePO_4$. The results show that the capacity of bare $LiFePO_4$ decreased sharply, whereas the $LiFePO_4$/C shows a well maintained initial capacity. The Li ion diffusivity of the bare and carbon coated $LiFePO_4$ is calculated using cyclic voltammetry (CV) to determine the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion. The diffusion constants for $LiFePO_4$ and $LiFePO_4$/C measured from CV are $6.56{\times}10^{-16}$ and $2.48{\times}10^{-15}\;cm^2\;s^{-1}$, respectively, indicating considerable increases in diffusivity after modifications. The Li ion diffusivity (DLi) values as a function of the lithium content in the cathode are estimated by electrochemical impedance spectroscopy (EIS). The effects of the carbon coating as well as the mechanisms for the improved electrochemical performances after modification are discussed based on the diffusivity data.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

이온질화 에 있어서 첨가탄소량 이 경도 및 마모특성 에 주는 영향 (The Added Carbon Content Effect on the Hardness And Wear Characteristics in Ion-Nitriding)

  • 김희송
    • 대한기계학회논문집
    • /
    • 제7권1호
    • /
    • pp.19-27
    • /
    • 1983
  • This paper deals with hardness and wear characteristics of ion-nitrided metal, and with ion-nitride processing which is concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness, and reduces wear rate when the applied wear load is small. It is found in the analysis that under small applied wear load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the abrasive wear where hardness is an important factor, is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below nucleation and propagation, is created and the existence of compound layer increase wear rate.

A brief review on graphene applications in rechargeable lithium ion battery electrode materials

  • Akbar, Sameen;Rehan, Muhammad;Liu, Haiyang;Rafique, Iqra;Akbar, Hurria
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.1-8
    • /
    • 2018
  • Graphene is a single atomic layer of carbon atoms, and has exceptional electrical, mechanical, and optical characteristics. It has been broadly utilized in the fields of material science, physics, chemistry, device fabrication, information, and biology. In this review paper, we briefly investigate the ideas, structure, characteristics, and fabrication techniques for graphene applications in lithium ion batteries (LIBs). In LIBs, a constant three-dimensional (3D) conductive system can adequately enhance the transportation of electrons and ions of the electrode material. The use of 3D graphene and graphene-expansion electrode materials can significantly upgrade LIBs characteristics to give higher electric conductivity, greater capacity, and good stability. This review demonstrates several recent advances in graphene-containing LIB electrode materials, and addresses probable trends into the future.

An Analysis on Treatment Schedule of Carbon Ion Therapy to Early Stage Lung Cancer

  • Sakata, Suoh;Miyamoto, Tadaaki;Tujii, Hirohiko
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.174-176
    • /
    • 2002
  • A total of 134 patients with stage 1 of non-small cell lung cancer treated by carbon ion beam of HIMAC NIRS were investigated for control rate and delivered dose. The delivered dose of every patient was converted to biological effective dose (BED) of LQ model using fraction number, dose per fraction and alpha beta ratio which shows the maximum correlation between BED and tumor control. The BED of every patient was classified to establish a BED response curve for control. Assuming fraction numbers, dose response curves were introduced from BED response curve. The total doses to realize several control rates were obtained for the treatment of small fraction number.

  • PDF

카본블랙 활성점 연구를 위한 아세틸렌 화학흡착 (C$_2H_2$ chemisorption for characterization of carbon black active sites)

  • 이상엽;곽정훈;윤기준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.80-83
    • /
    • 2007
  • In order to characterize the catalytically active sites on carbon black, acetylene chemisorption had been examined recently at 773 and 873 K by using a pulse technique. As the inject ion was repeated at 773 K, the adsorbed amount gradually decreased and eventually the adsorption did not occur any more. At 873 K a constant amount of $C_2H_2$ was consumed repeatedly after several injections. Good linear relationships were obtained between the methane decomposition rate at 1123 or 1173 K and the cumulative acetylene adsorption at 773 K or the constant acetylene consumption at 873 K. Reasonable models for the associative acetylene chemisorption at 773 K and the constant acetylene consumption at 873 K on the armchair face at the edges of graphene layers were proposed. The constant consumpt ion may be explained by the "$C_2H_2$-addition-hydrogen- abstract ion (CAHA)" mechanism.

  • PDF

Focus Ion Beam을 이용한 탄소나노튜브 팁의 조작 (Using Focus Ion Beam Carbon Nanotube Tip Manipulation)

  • 윤여환;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.461-462
    • /
    • 2006
  • This paper reports on the development of a scanning probe microscopy(SPM) tip with caborn nanotubes. We used an electric field which causes dielectrophoresis(DEP), to align and deposit CNTs on a metal-coated SPM tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip align toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for scanning probe microscopy.

  • PDF

레이저 어블레이션 시뮬레이션 - 1 차원 비대칭 용량결합형 모델 - (The Simulation of Pulsed Laser Ablation - One-dimensional CCP Model -)

  • 소순열;정해덕;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집 센서 박막재료연구회 및 광주 전남지부
    • /
    • pp.22-26
    • /
    • 2008
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present simulation, we adopt capacitively coupled plasma with asymmetrical electrodes. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF