DOI QR코드

DOI QR Code

A brief review on graphene applications in rechargeable lithium ion battery electrode materials

  • Akbar, Sameen (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture) ;
  • Rehan, Muhammad (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture) ;
  • Liu, Haiyang (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture) ;
  • Rafique, Iqra (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture) ;
  • Akbar, Hurria (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture)
  • Received : 2018.01.01
  • Accepted : 2018.03.02
  • Published : 2018.10.31

Abstract

Graphene is a single atomic layer of carbon atoms, and has exceptional electrical, mechanical, and optical characteristics. It has been broadly utilized in the fields of material science, physics, chemistry, device fabrication, information, and biology. In this review paper, we briefly investigate the ideas, structure, characteristics, and fabrication techniques for graphene applications in lithium ion batteries (LIBs). In LIBs, a constant three-dimensional (3D) conductive system can adequately enhance the transportation of electrons and ions of the electrode material. The use of 3D graphene and graphene-expansion electrode materials can significantly upgrade LIBs characteristics to give higher electric conductivity, greater capacity, and good stability. This review demonstrates several recent advances in graphene-containing LIB electrode materials, and addresses probable trends into the future.

Keywords

References

  1. Zhu J, Wang D, Cao L, Liu T. Ultrafast preparation of three-dimensional porous tin-graphene composites with superior lithium ion storage. J Mater Chem A, 2, 12918 (2014). https://doi.org/10.1039/c4ta02021a.
  2. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). https://doi.org/10.1038/nmat2297.
  3. Atabaki MM, Kovacevic R. Graphene composites as anode materials in lithium-ion batteries. Electron Mater Lett, 9, 133 (2013). https://doi.org/10.1007/s13391-012-2134-7.
  4. Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett, 13, 6136 (2013). https://doi.org/10.1021/nl403461n.
  5. Rai AK, Gim J, Anh LT, Kim J. Partially reduced $Co_3O_4$/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim Acta, 100, 63 (2013). https://doi.org/10.1016/j.electacta.2013.03.140.
  6. Xu R, Wang Y, Liu B, Fang D. Mechanics interpretation on the bending stiffness and wrinkled pattern of graphene. J Appl Mech, 80, 040910 (2013). https://doi.org/10.1115/1.4024178.
  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896.
  8. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). https://doi.org/10.1021/nl802558y.
  9. Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2, 620 (2006). https://doi.org/10.1038/nphys384.
  10. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024.
  11. Lu X, Yu M, Huang H, Ruoff RS. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10, 269 (1999). https://doi.org/10.1088/0957-4484/10/3/308.
  12. Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 4, 25 (2009). https://doi.org/10.1038/nnano.2008.329.
  13. Evanoff K, Magasinski A, Yang J, Yushin G. nanosilicon-coated graphene granules as anodes for Li-ion batteries. Adv Energy Mater, 1, 495 (2011). https://doi.org/10.1002/aenm.201100071.
  14. Zhao Y, Zhan L, Tian J, Nie S, Ning Z. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochim Acta, 56, 1967 (2011). https://doi.org/10.1016/j.electacta.2010.12.005.
  15. Wintterlin J, Bocquet ML. Graphene on metal surfaces. Surf Sci, 603, 1841 (2009). https://doi.org/10.1016/j.susc.2008.08.037.
  16. Yan Y, Tang H, Wu F, Wang R, Pan M. One-step self-assembly synthesis ${\alpha}-Fe_2O_3$ with carbon-coated nanoparticles for stabilized and enhanced supercapacitors electrode. Energies, 10, 1296 (2017). https://doi.org/10.3390/en10091296.
  17. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 9, 2206 (2009). https://doi.org/10.1021/nl901209z.
  18. Duc KD, Holcman D. Computing the length of the shortest telomere in the nucleus. Phys Rev Lett, 111, 228104 (2013). https:// doi.org/10.1103/physrevlett.111.228104.
  19. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu T, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034.
  20. Shon IJ, Kim TW, Doh JM, Yoon JK, Park SW, Ko IY. Mechanical synthesis and rapid consolidation of a nanocrystalline $3.3Fe_{0.6}Cr_{0.3}Al_{0.1}-Al_2O_3$ composite by high frequency induction heating. J Alloys Compd, 509, L7 (2011). https://doi.org/10.1016/j.jallcom.2010.09.067
  21. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today, 18, 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040.
  22. Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in $LiFePO_4$. Solid State Ionics, 148, 45 (2002). https://doi.org/10.1016/s0167-2738(02)00134-0.
  23. Guan X., Li G, Li C, Ren R. Synthesis of porous nano/micro structured $LiFePO_4/C$ cathode materials for lithium-ion batteries by spray-drying method. Trans Nonferrous Met Soc China, 27, 141 (2017). https://doi.org/10.1016/s1003-6326(17)60016-5.
  24. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Preparation of nano-structured $LiFePO_4$/graphene composites by co-precipitation method. Electrochem Commun, 12, 10 (2010). https://doi.org/10.1016/j.elecom.2009.10.023.
  25. Tong J, Fang Y. Enhanced lithium storage capability of $Li_3V_2(PO_4)_3$@C co-modified with graphene and $Ce^{3+}$ doping as high-power cathode for lithium-ion batteries. J Phys Chem Solid, 111, 349 (2017). https://doi.org/10.1016/j.jpcs.2017.08.029.
  26. Wang K, Wang Y, Wang C, Xia Y. Graphene oxide assisted solvothermal synthesis of $LiMnPO_4$ naonplates cathode materials for lithium ion batteries. Electrochim Acta, 146, 8 (2014). https://doi.org/10.1016/j.electacta.2014.09.032.
  27. Bak SM, Nam KW, Lee CW, Kim KH, Jung HC, Yang XQ, Kim KB. Spinel $LiMn_2O_4$/reduced graphene oxide hybrid for high rate lithium ion batteries. J Mater Chem, 21, 17309 (2011). https://doi.org/10.1039/c1jm13741g.
  28. Venkateswara Rao C, Reddy ALM, Ishikawa Y, Ajayan PM. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$-graphene composite as a promising cathode for Lithium-ion batteries. ACS Appl Mater Interfaces, 3, 2966 (2011). https://doi.org/10.1021/am200421h.
  29. Reddy ALM, Nagarajan S, Chumyim P, Gowda SR, Pradhan P, Jadhav SR, Dubey M, John G, Ajayan PM. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes. Sci Rep, 2, 960 (2012). https://doi.org/10.1038/srep00960.
  30. Zhu J, Duan R, Zhang S, Jiang N, Zhang Y, Zhu J. The application of graphene in lithium ion battery electrode materials. Springer-Plus, 3, 585 (2014). https://doi.org/10.1186/2193-1801-3-585.
  31. Levasseur S, Ménétrier M, Delmas C. On the dual effect of Mg doping in $LiCoO_2$ and $Li1_{+{\delta}}CoO_2$: structural, electronic properties, and $^7Li$ MAS NMR studies. Chem Mater, 14, 3584 (2002). https://doi.org/10.1021/cm021107j.
  32. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451.
  33. Hoang K, Johannes M. Tailoring native defects in $LiFePO_4$: insights from first-principles calculations. Chem Mater, 23, 3003 (2011). https://doi.org/10.1021/cm200725j.
  34. Jiang Y, Liu R, Xu W, Jiao Z, Wu M, Chu Y, Su L, Cao H, Hou M, Zhao B. A novel graphene modified $LiMnPO_4$ as a performance-improved cathode material for lithium-ion batteries. J Mater Res, 28, 2584 (2013). https://doi.org/10.1557/jmr.2013.235.
  35. Zhang W, Liu F, Li Q, Shou Q, Cheng J, Zhang L, Nelson BJ, Zhang X. Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. Phys Chem Chem Phys, 14, 16331 (2012). https://doi.org/10.1039/c2cp43673f.
  36. Bai LS, Gao XM, Zhang X, Sun FF, Ma N. Reduced graphene oxide as a recyclable catalyst for dehydrogenation of hydrazo compounds. Tetrahedron Lett, 55, 4545 (2014). https://doi.org/10.1016/j.tetlet.2014.06.097.
  37. Li X, Zhao X, Wang MS, Zhang KJ, Huang Y, Qu MZ, Yu ZL, Geng D, Zhao W, Zheng J. Improved rate capability of a $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$/CNT/graphene hybrid material for Li-ion batteries. RSC Adv, 7, 24359 (2017). https://doi.org/10.1039/c7ra03438e.
  38. Kim S, Zhang Z, Wang S, Yang L, Cairns EJ, Penner-Hahn JE, Deb A. Electrochemical and structural investigation of the mechanism of irreversibility in $Li_3V_2(PO_4)_3$ cathodes. J Phys Chem C, 120, 7005 (2016). https://doi.org/10.1021/acs.jpcc.6b00408.
  39. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM. Graphene anchored with $Co_3O_4$ nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 4, 3187 (2010). https://doi.org/10.1021/nn100740x.
  40. Wei D, Haque S, Andrew P, Kivioja J, Ryhänen T, Pesquera A, Centeno A, Alonso B, Chuvilin A, Zurutuza A. Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. J Mater Chem A, 1, 3177 (2013). https://doi.org/10.1039/c3ta01183f.
  41. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM. $CeO_2$ nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans, 40, 6388 (2011). https://doi.org/10.1039/c1dt10397k.
  42. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta, 55, 3909 (2010). https://doi.org/10.1016/j.electacta.2010.02.025.
  43. Pan A, Choi D, Zhang JG, Liang S, Cao G, Nie Z, Arey BW, Liu J. High-rate cathodes based on $Li_3V_2(PO_4)_3$ nanobelts prepared via surfactant-assisted fabrication. J Power Sources, 196, 3646 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.067.
  44. Liu H, Huang J, Li X, Liu J, Zhang Y, Du K. Flower-like $SnO_2$/graphene composite for high-capacity lithium storage. Appl Surf Sci, 258, 4917 (2012). https://doi.org/10.1016/j.apsusc.2012.01.119.
  45. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58.
  46. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). https://doi.org/10.1038/35104644.