• Title/Summary/Keyword: Carbon fiber/Epoxy

Search Result 478, Processing Time 0.029 seconds

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Effect of Various Sizing Agents on the Properties of Nylon6/Carbon Fiber Composites Prepared by Reactive Process (다양한 사이징제가 반응중합에 의해 제조된 나일론 6/탄소섬유 복합체의 물성에 미치는 영향)

  • Park, Ha-Neul;Lee, Hak Sung;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.299-303
    • /
    • 2018
  • In order to improve the interfacial bonding force and reaction polymerization degree of the carbon fiber reinforced nylon 6 composite material, the surface of the existing epoxy-sizing carbon fiber was desized to remove the epoxy and treated with urethane, nylon and phenoxy sizing agent, was observed. The interfacial bond strength of the resized carbon fiber was confirmed by IFSS (Interfacial Shear Strength) and the fracture surface was observed by scanning electron microscope. The results showed that the interfacial bonding strength of the carbon fiber treated with nylon and phenoxy sizing agents was higher than that of urethane - based sizing. It has been found that the urethane - type resizing carbon fiber has lower interfacial bonding strength than the conventional epoxy - sizing carbon fiber. This result shows that the interfacial bonding between carbon fiber and nylon 6 is improved by removing low activity and smoothness of existing carbon fiber.

Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC (PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향)

  • Lee, Jaeyoung;Lee, Wookum;Rim, Hyungryul;Joung, Gyubum;Lee, Hongki
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

Effects of Humidity and Structure on Friction and Wear Properties of Carbon Fiber/Epoxy Composites (탄소 섬유/에폭시 복합 재료의 마찰 및 마멸 성질에 미치는 습도 및 구조의 영향)

  • 심현해;권오관;윤재륜
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.11a
    • /
    • pp.63-68
    • /
    • 1990
  • Friction and wear behavior of a unidirectional high modulus carbon fiber reinforced epoxy composite exposed to high and low humidity was experimentally examined with various sliding speeds. The results show that the moisture at the sliding surface greatly influences friction and wear properties of the composite. It is also discoverd that the difference in friction and wear behavior between samples with different fiber orientations is mainly due to the anisotropic properties caused by the microstructure of oriented graphite crystals in the carbon fibers and the macrostructure of fiber orientation in the matrix.

  • PDF

Effects of Humidity and Structure on Friction and Wear Properties of Carbon Fiber/Epoxy Composites (탄소 섬유/에폭시 복합 재료의 마찰 및 마멸 성질에 미치는 습도 및 구조의 영향)

  • 심현해;권오관;윤재륜
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.88-93
    • /
    • 1990
  • Friction and wear behavior of a unidirectional high modulus carbon fiber reinforced epoxy composite exposed to high and low humidity was experimentally examined with various sliding speeds. The results show that the moisture at the sliding surface greatly influences friction and wear properties of the composite. It is also discoverd that the difference in friction and wear behavior between samples with different fiber orientations is mainly due to the anisotropic properties caused by the microstructure of oriented graphite crystals in the carbon fibers and the macrostructure of fiber orientation in the matrix.

Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods (분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율)

  • 김태욱;김진봉;공진우;정재한;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

탄소섬유 복합재료 보오링바의 Chatter 특성에 관한 연구

  • 김형철;김기수;함승덕;이대길;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.22-31
    • /
    • 1991
  • Machining with boring bars frequently induce chatter vibration because of the low stiffness and damping of cantilever shape of boring bars. To increase stiffness and damping, a carbon fiber epoxy composite boring bar was designed, manufactured and tested. The natural frequency of the carbon fiber epoxy composite boring bar in the free-free end condition was incerased more than 50% over that of the steel boring bar, and the damping of the carbon fiber epoxy composite boring bar was also increased 450%. The fundamental natural frequency of the carbon fiber epoxycomposite boring bar in the cantilever beam condition was found to be increased 20-30% over that of the steel boring bar in overhang length range 140-200mm. In machining S45C tapered workpieces, the limit of the overhang length of the steel boring bar was about 170mm in cutting speed 140m/min.

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Influence of Moisture Absorption on the Mechanical Properties in the Laminated Composites (적층형 복합재료의 기계적 성질에 미치는 수분의 영향)

  • Moon, Chang-Kwan;Choi, Hee-Lark;Lee, Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.90-99
    • /
    • 2000
  • This study has been investigated about the influence of moisture environment properties in the unidirectional and cross laminated carbon fiber/epoxy and glass fiber/epoxy composites. As a results, it was found that the weight gain of water increased with the immersion time and the mechanical properties were decreased with the weight gain of water. And it was also shown that the mechanical properties of carbon fiber/epoxy laminates were better than those of glass fiber/epoxy laminates. And a gap of the mechanical properties between the two kinds of laminates was increasing with the immersion time in distilled water of 80$^{\circ}C $. Mechanical properties which decreased by moisture absorption in the CF and GF reinforced laminates were recovered up to some extent by drying in oven at 80$^{\circ}C $ for 10 days.

  • PDF