• Title/Summary/Keyword: Carbon emission value

Search Result 192, Processing Time 0.028 seconds

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

Numerical Modeling of Anodic Reaction of Carbon-Rich Fuel at Solid Oxide Fuel Cell (탄소연료를 이용하는 고체 산화물 연료전지의 연료극 반응 수치해석)

  • Lim, Ho;Kim, Jong-Pil;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.188-194
    • /
    • 2010
  • Direct Carbon Fuel Cell(DCFC), unlike gas turbines or engines, is a kind of fuel cell which directly generates electricity by electrochemical reaction from a carbon fuel. The advantages of DCFC are higher efficiency and lower emission in comparison with existing power generation facilities. In this study, the effects of CO and $CO_2$ on theoretical potential are examined using the thermodynamic equilibrium method, and the dependence of product on operating temperature is examined via two dimensional CFD method. As a result, when the reaction of CO production (Boudouard reaction) considered, theoretical potential is higher than that in only $CO_2$ reactions, and its value increases as temperature increases. Two dimensional results of computational fluid dynamics(CFD) confirm that the Boudouard reaction becomes more important to be considered as temperature increases and inert gas affects the equilibrium composition of the Boudouard reaction.

Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea

  • Song, Man-K.;Li, Xiang-Z.;Oh, Young-K.;Lee, Chang-Kyu;Hyun, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.130-136
    • /
    • 2011
  • Methane is known to be one of the major greenhouse gases. On a global scale, livestock farming may contribute 18% of total greenhouse gas emissions. Though methane contribution is less than 2% of all the factors leading to global warming, it plays an important role because it is 21 times more effective than carbon dioxide. Methane emission is a direct result of the fermentation process performed by ruminal microorganisms and, in particular, the archael methanogens. Reducing methane emission would benefit both ruminant production and the environment. Methane generation can be reduced by electron-sink metabolic pathways to dispose of the reducing moieties. An alternative way for methane control in the rumen is to apply inhibitors against methanogens. Generating methane from manure has considerable merit because it appears to offer at least a partial solution to two pressing problems-environmental crisis and energy shortage. An obvious benefit from methane production is the energy value of the gas itself. Control of methane emission by rumen microbes in Korea has mainly been focused on application of various chemicals, such as BES and PMDI, that inhibit the growth and activity of methanogens in the rumen. Alternatives were to apply long-chain polyunsaturated fatty acids and oils with or without organic acids (malate and fumarate). The results for trials with methane reducing agents and the situation of biogas production industries and a typical biogas plant in Korea will be introduced here.

Fabrication of Vertically Aligned GaN Nanostructures and Their Field Emission Property

  • Jo, Jong-Hoe;Kim, Je-Hyeong;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.281-281
    • /
    • 2014
  • The field emission properties of GaN are reported in the present study. To be a good field emitter, it requires a low work function, high aspect ratio, and strong mechanical stability. In the case of GaN, it has a quite low work function (4.1eV) and strong chemical/mechanical/thermal stabilities. However, so far, it was difficult to fabricate vertical GaN nanostructures with a high aspect ratio. In this study, we successfully achieved vertically well aligned GaN nanostructures with chemical vapor-phase etching methods [1] (Fig. 1). In this method, we chemically etched the GaN film using hydrogen chloride and ammonia gases at high temperature around $900^{\circ}C$. This process effectively forms vertical nanostructures without patterning procedure. This favorable shape of GaN nanostructures for electron emitting results in excellent field emission properties such as a low turn-on field and long term stability. In addition, we observed a uniform fluorescence image from a phosphor film attached at the anode part. The turn-on field for the GaN nanostructures is found to be about $0.8V/{\mu}m$ at current density of $20{\mu}A$/cm^2. This value is even lower than that of typical carbon nanotubes ($1V/{\mu}m$). Moreover, threshold field is $1.8V/{\mu}m$ at current density of $1mA$/cm^2. The GaN nanostructures achieved a high current density within a small applied field range. We believe that our chemically etched vertical nanostructures are the promising structures for various field emitting devices.

  • PDF

A Case Study of Integration Assessment of Environmental Aspect and Cost Aspect Based on GHG Emission for Design Alternative Selection of a Railway Vehicle (철도차량 설계대안 선정에 대한 GHG 배출량 기반 환경 경제성 통합평가 사례연구)

  • Choi, Yo-Han;Lee, Cheul-Kyu;Lee, Jae-Young;Kim, Yong-Ki;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.606-612
    • /
    • 2011
  • At the product design and development stage, the main criteria selecting a design alternative were performance aspect as well as cost aspect of a product. Ongoing new paradigm shifts such as low carbon green growth, climate change mitigation, sustainable society development urged considering environmental aspect of a product at the product design and development stage. Up to recently, only cost aspect except performance of a product was considered at the railway vehicle design process. Therefore, it is needed to develop a method that may consider environmental aspect of a product at the railway vehicle design process. Lee (2011) proposed that a method of an integration assessment of environmental aspect and cost aspect based on GHG emission instead of based on monetary value. This study conducted that apply the method of Lee (2011) to design alternative selection process of a railway vehicle. From the integrated view of environmental and cost aspect, the reference product and design alternatives are assessed and compared.

  • PDF

Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment (정량적 위험성평가를 위한 배출 오염물질 분포 예측)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.

Emission Properties from Induced Structural Degradation of a-C:H Thin Film

  • Yoo, Young-Zo;Song, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.89-92
    • /
    • 2011
  • Hydrogenated amorphous carbon (a-C:H) films were deposited by plasma enhanced chemical vapor deposition on silicon substrates. a-C:H thin film was irradiated to a typical He-Cd laser to study its emitting properties. The photoluminescence (PL) intensity during the irradiation achieved a maximum value when 2,000 seconds elapsed. Fourier transform infrared measurement revealed a-C:H thin film suffered transformation from a polymer-like to graphite-like phase during laser irradiation. Thermal annealing was done at various temperatures, ranging from room temperature to $400^{\circ}C$ in the atmosphere, to investigate structural changes in a-C:H film by heat generation during the emission. PL intensity of a-C:H thin film increased 1.5 times without apparent structural change, as annealing temperature increased up to $200^{\circ}C$. However, a-C:H film above $200^{\circ}C$ exhibited significant decrease of PL accompanying dehydrogenation. This led to a red shift of the PL peak.

A study on the proposal of environmental capacity criterion method for windows system in buildings (창호시스템의 환경성능평가기법 정립에 관한 연구)

  • Choi, Doo-Sung;Kim, Eun-Gyu;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 2004
  • This research investigates the life-cycle energy consumption of the windows used for the building's exterior cladding, and its environmental potential aspects by utilizing the LCA. The research scope has taken account of the entire life-cycle of the windows from the extraction of raw materials to its disposal, of which given sample building type is an apartment building. Results gained from the LCA of the windows as one of the steps in analysis reflects the current global interest and analysis trend towards the world's environmental issue on all fields of industry including the architectural industry, of which its newly established standards of architectural windows can further promote more environmentally sustainable factor compared to the previous analysis (focused more on energy efficiency assessment of the use stage).

Greenhouse Gas Emission Reduction and Economic Benefit Evaluation of Carbon Mineralization Technology using CFBC Ash (순환유동층 석탄재를 이용한 탄소광물화 기술의 온실가스 배출 저감량 및 경제성 분석)

  • Jung, Euntae;Kim, Jeongyun
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.40-52
    • /
    • 2022
  • This study analyzed the amount of carbon dioxide reduction and economic benefits of detailed processes of CO2 6,000 tons plant facilities with mineral carbonation technology using carbon dioxide and coal materials emitted from domestic circulating fluidized bed combustion power plants. Coal ash reacted with carbon dioxide through carbon mineralization facilities is produced as a complex carbonate and used as a construction material, accompanied by a greenhouse gas reduction. In addition, it is possible to generate profits from the sales of complex carbonates and carbon credits produced in the process. The actual carbon dioxide reduction per ton of complex carbonate production was calculated as 45.8 kgCO2eq, and the annual carbon dioxide reduction was calculated as 805.3 tonCO2, and the benefit-cost ratio (B/C Ratio) is 1.04, the internal rate return (IRR) is 10.65 % and the net present value (NPV) is KRW 24,713,465 won, which is considered economical. Carbon mineralization technology is one of the best solutions to reduce carbon dioxide considering future carbon dioxide reduction and economic potential.

Study on the Performance of an SI Gas Engine by Fuel Composition and Spark Plug Variation (연료 조성 및 스파크 플러그 위치 변경으로 인한 가스 엔진의 성능에 관한 연구)

  • Kim, Yongrae
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.21-26
    • /
    • 2014
  • Renewable gas fuels such as biogas and landfill gas have carbon-neutral nature which can reduce carbon dioxide. However, it is necessary to make stable combustion when this fuel is used in power generating SI(spark ignition) gas engines due to its low heating value and non-uniformity. In this study, it was shown that addition of hydrogen can increase combustion stability of gas engine which is running with high inert gas composition. Thermal efficiency and emission characteristics of this engine was also investigated. In addition, a new spark plug with a long electrode was tested and compared with a base spark plug as a way to improve engine efficiency and reduce exhaust emissions.