Numerical Modeling of Anodic Reaction of Carbon-Rich Fuel at Solid Oxide Fuel Cell

탄소연료를 이용하는 고체 산화물 연료전지의 연료극 반응 수치해석

  • Lim, Ho (Graduate School of Mechanical Engineering, Pusan National University) ;
  • Kim, Jong-Pil (Graduate School of Mechanical Engineering, Pusan National University) ;
  • Song, Ju-Hun (School of Mechanical Engineering, Pusan National University) ;
  • Chang, Young-June (School of Mechanical Engineering, Pusan National University) ;
  • Jeon, Chung-Hwan (School of Mechanical Engineering, Pusan National University)
  • 임호 (부산대학교 기계공학부 대학원) ;
  • 김종필 (부산대학교 기계공학부 대학원) ;
  • 송주헌 (부산대학교 기계공학부) ;
  • 장영준 (부산대학교 기계공학부) ;
  • 전충환 (부산대학교 기계공학부)
  • Received : 2010.08.21
  • Accepted : 2010.09.18
  • Published : 2010.09.30

Abstract

Direct Carbon Fuel Cell(DCFC), unlike gas turbines or engines, is a kind of fuel cell which directly generates electricity by electrochemical reaction from a carbon fuel. The advantages of DCFC are higher efficiency and lower emission in comparison with existing power generation facilities. In this study, the effects of CO and $CO_2$ on theoretical potential are examined using the thermodynamic equilibrium method, and the dependence of product on operating temperature is examined via two dimensional CFD method. As a result, when the reaction of CO production (Boudouard reaction) considered, theoretical potential is higher than that in only $CO_2$ reactions, and its value increases as temperature increases. Two dimensional results of computational fluid dynamics(CFD) confirm that the Boudouard reaction becomes more important to be considered as temperature increases and inert gas affects the equilibrium composition of the Boudouard reaction.

DCFC는 가스 터빈이나 엔진과 달리 탄소를 사용하여 전기화학반응을 통해 직접 전기를 생산하는 연료전지이며, 주요 특징으로 기존의 발전설비 보다 높은 효율과 낮은 배기 배출물을 발생한다. 본 연구에서는 간단한 열역학 평형 해석을 통해 CO와 $CO_2$가 이론 기전력에 미치는 영향을 확인하였으며, 2차원 CFD 해석 방법을 이용하여 온도에 따른 반응 생성물 변화를 살펴보았다. 그 결과, CO 생성 반응(Boudouard 반응)을 동시에 고려한 이론 기전력 값은 $CO_2$ 생성 반응만 고려한 값(약 1.02 V)보다 크며, 특히 온도가 증가할수록 그 값이 증가함을 보여주었다. 2차원 수치해석 결과를 통하여서 Boudouard 반응이 고온으로 갈수록 중요하며, 비활성 기체로 인하여 Boudouard 반응이 지연됨을 확인하였다.

Keywords

References

  1. Lee, K. S., Cho, H. H., 2005, "Numerical Analysis of Molten Carbonate Fuel Cell Stack using Computational Fluid Dynamics," Journal of the Korean Electrochemical Society, Vol. 8, No. 4, pp. 155-161. https://doi.org/10.5229/JKES.2005.8.4.155
  2. Hwang, J. Y., Yoon, J. E., Kang, K. T., Kim, J. H., Lee, B. J., 2009, "Effects of Anode and Current Collector Materials on the Power Density of Solid Oxide Electrolyte Direct Carbon Fuel Cell," Proceeding of the KSNRE 2009 Spring Conference, pp. 392-394.
  3. Lee, T. H., Choi, J. H., Park, T. S., Yoo, Y. S., Nam, S. W., 2009, "Design and Self- Sustainable Operation of 1kW SOFC System," Tras. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 5, pp. 384-389.
  4. Larmine, J., Dicks, A., 2003, Fuel Cell System Explained, 2nd, Chichester, Wiley, pp. 1-24.
  5. Cao, D., Sun, Y., Wang, G., 2007, "Direct Carbon Fuel Cell: Fundamentals and Recent Developments," Journal of Power Sources, Vol. 167, No 2, pp. 250-257. https://doi.org/10.1016/j.jpowsour.2007.02.034
  6. Cooper, J. F., Berner, K., Presented in Fuel Cell Seminar, Direct Carbon Fuel Cell Workshop, Palm Springs, CA, USA, 14th November, 2005, Proceedings online: http://www.fuelcellseminar.com/pdf/Direct Carbon Fuel Cell Workshop/Cooper John.pdf.
  7. Cooper, J. F., Presented in Direct Carbon Fuel Cell Workshop, NETL, Pittsburg, PA, USA, 30th July, 2003, Proceedings online: http://www.netl.doe.gov/publications/proceedings/03/dcfcw/Cooper%202.pdf.
  8. Kim, J. P., Lim, H., Jeon, C. H., Chang, Y. J., Koh, K. N., Choi, S. M., Song, J. H., 2010, "Performance Evaluation of Tubular Fuel Cells Fuelled by Pulverized Graphite," Journal of Power Sources, Vol. 195, No. 22, pp. 7568-7573. https://doi.org/10.1016/j.jpowsour.2010.05.065
  9. Liu, Q., Tian, Y., Xia, C., Thompson, L. T., Liang, B., Li, Y., 2008, "Modeling and Simulation of a Single Direct Carbon Fuel Cell," Journal of Power Sources, Vol. 185, No. 2, pp. 1022-1029. https://doi.org/10.1016/j.jpowsour.2008.08.100
  10. Barbir, F., 2005, PEM Fuel Cells - Theory and Practice, Elesevier, pp. 17-31.
  11. Tang, Y., Liu, J., Sui, J., 2009, "A Novel Direct Carbon Solid Oxide Fuel Cell," ECS Transaction, Vol. 25, No. 2, pp. 1109-1114.
  12. Vamvuka, D., WoodBurn, E. T., 1998, "A Model of the Combustion of a Single Small Coal Particle using Kinetic Parameters Based on Thermogravimetric Analysis," Internationl Journal of Energy Research, Vol. 22, pp. 657-670. https://doi.org/10.1002/(SICI)1099-114X(19980610)22:7<657::AID-ER391>3.0.CO;2-C
  13. Lee, A. C., Mitchell, R. E., Gur, T. M., 2009, "Thermodynamic Analysis of Gasification-Dirven Direct Carbon Fuel Cells," Journal of Power Sources, Vol. 194, pp. 774-785. https://doi.org/10.1016/j.jpowsour.2009.05.039
  14. Fluent User Guide 6.3
  15. Silaen, A., Wang, T., 2010, "Effect of Turbulence and Devolatilization Models on Coal Gasification Simulation in an Entrained-flow Gasifier," International Journal of Heat Mass Transfer, Vol. 53, pp. 2074-2091. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.047
  16. Smoot, L. D., Smith, P. J., 1985, COAL Combustion and Gasfication, Plenum Press, New York, pp. 168-174.