• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,976, Processing Time 0.032 seconds

The Performance Comparison of $CO_2$ Gascooler and Evaporator with Heat Exchanger Type (열교환기 형태에 따른 이산화탄소용 가스쿨러와 증발기의 성능비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • The natural refrigerants have used into HVAC equipments because the CFCs and HFCs have some environmental problems like high ODP and GWP. The carbon dioxide has small effect on the environmental problem but also good thermodynamics properties. In this study, the simulation study on the performance and characteristics of a $CO_2$ gascooler and evaporator using a fin-tube and microchannel heat exchanger has been conducted. Besides, the comparison of performance with operating condition was carried out in order to apply to the $CO_2$ heat pump system. As a result, the front sizes of a gascooler and evaporator using a microchannel were decreased by 63% and 58%, respectively, compared to those using a fin-tube. The performance of the fin-tube gascooler and evaporator were more responsive to the variation of operating conditions compared to that of microchannel. The pressure drop of a fin-tube heat exchanger was higher than that of a microchannel one.

Investigation on Conservation Environment of the Seokguram Grotto (National Treasure No. 24) (국보 제24호 석굴암의 보존환경)

  • Hong, Jung-Ki;Eom, Doo-Sung
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.169-184
    • /
    • 2003
  • Yearly mean temperature and relative-humidity of the Seokguram Grotto was measured $19~23^{\circ}C$, 40~44% from May, 1998 to December,2002. The measurement has little differences comparing to the optimum guideline (temperature : $20^{\circ}\pm2^{\circ}C$, relative-humidity : $50^{\circ}\pm5%$). It is necessary to increase humidity in the Seokguram Grotto during winter because of heating and decrease the temperature during summer because of a higher temperature of outside. In addition, the diurnal range keep in $4^{\circ}C$ of temperature and in 10% of relative-humidity. Yearly mean concentration of $CO_2$(carbon dioxide) was measured538~658ppm that is higher than concentration of normal atmosphere(360 ppm). The $CO_2$ has an cumulative effect on the surface of stone cultural properties as a form of carbonic acid($H_2CO_3$) after reaction with water. HVAC (Heating, Ventilation and Air Conditioning) system should be operated to maintain ideal state for the preservation according to the optimum guideline. Also, the entrance into the Seokguram Grotto should be controlled to prevent a sudden fluctuation of humidity and temperature. Human could carry small particles like a microdust, microbe, etc., into the Seokguram Grotto and also could damage the surface by a direct touch.

  • PDF

Optimization of Membrane Separation System for Carbon Dioxide Recovery from Combustion Gases (연소기체로부터 이산화탄소 회수를 위한 막 분리 공정의 최적화)

  • Han, Myungwan;Kim, Miyoung;Kim, Beom-Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.222-229
    • /
    • 2005
  • Five stage enriching membrane system for separating combustion gas (air 90%, $CO_2$ 10%) was proposed and simulated by using Aspen plus and Excel. The system recovers 90% $CO_2$ of the combustion gas and the purity of $CO_2$ recovered was more than 99%. Optimization yields a reduction in membrane area as well as operating and capital cost. Retentate concentration and permeate pressure of each stage were chosen as optimization variables. By analyzing the optimization results, we derived several design guide lines for the enriching membrane system.

Absorption and Regeneration Characteristics of a Sorbent for Fluidized-Bed CO2 Removal Process (유동층 CO2 회수공정을 위한 흡수제의 흡수 및 재생특성)

  • Yi, Chang-Keun;Hong, Sun-Wook;Jo, Sung-Ho;Son, Jae-Ek;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.294-298
    • /
    • 2005
  • Absorption and regeneration characteristics of sorbent used in a fluidized-bed process to capture $CO_2$ from flue gas have been measured in a thermo gravimetric analyzer. A sorbent Sorb NH prepared for fluidized-bed process was faster than pure $Na_2CO_3$ in absorption and regeneration reaction rate. Activation energy of apparent absorption reaction of sorbent Sorb NH was estimated as -10,100 cal/g mol and that of pure $Na_2CO_3$ as -12,200 cal/g mol. Activation energy of apparent regeneration reaction of sorbent Sorb NH was estimated as about 12,050 cal/g mol and that of pure $Na_2CO_3$ as about 11,320 cal/g mol.

Effects of the Elevated Temperature and Carbon Dioxide on Vine Growth and Fruit Quality of 'Campbell Early' Grapevines (Vitis labruscana) (온도와 이산화탄소의 상승처리가 포도 '캠벨얼리'의 수체생육과 과실품질에 미치는 영향)

  • Son, In Chang;Han, Jeom-Haw;Cho, Jung Gun;Kim, Seung Heui;Chang, Eun-Ha;Oh, Sung Il;Moon, Kyung-Hwan;Choi, In-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • The effects of elevated temperature and $CO_2$ concentration on vine growth and characteristics of fruits of three-year-old 'Campbell Early' grapevine were investigated. The treatment groups consisted of a control group (ambient temperature and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated temperature group (ambient temperature + $4.0^{\circ}C$ and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated $CO_2$ group (ambient temperature and $700{\mu}L{\cdot}L^{-1}\;CO_2$), and an elevated $CO_2$/temperature group (ambient temperature + $4.0^{\circ}C$ and $700{\mu}L{\cdot}L^{-1}\;CO_2$). The average shoot length was 312.6 cm in the elevated $CO_2$/temperature group, which was higher than the other groups; with 206.2 cm in the control group and 255.6 cm and 224.8 cm in the elevated temperature group and elevated $CO_2$ group respectively. However, the shoot diameter showed a tendency of decreasing in the elevated temperature and elevated $CO_2$/temperature groups. The equatorial diameter of berries was increased in the higher carbon dioxide concentration, and the soluble solid content was the highest in the elevated $CO_2$ group, with $14.6^{\circ}Brix$ among all treatment groups and the lowest in the elevated temperature group ($13.9^{\circ}Brix$). The harvest date was approximately 11 d earlier in the elevated $CO_2$/temperature group and 4 to 2 days earlier in the elevated $CO_2$ group and elevated temperature group, respectively. Regarding the rate of photosynthesis and transpiration during the growth period, higher photosynthetic rates were observed in the elevated $CO_2$ group and the elevated $CO_2$/temperature group during the early stage of growth; however the photosynthetic rate was reduced dramatically in summer, which was contrary to transpiration.

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Analysis of time series models for PM10 concentrations at the Suwon city in Korea (경기도 수원시 미세먼지 농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1117-1124
    • /
    • 2010
  • The PM10 (Promethium 10) data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model has been considered for analyzing the monthly PM10 data at the southern part of the Gyeonggi-Do, Suwon monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables for the PM10 data set. The six meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, radiation, and amount of cloud. The four air pollution explanatory variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result showed that the monthly ARE models explained about 13-49% for describing the PM10 concentration.

A Study on the Prototype Setting for Energy Independent Site Planning (에너지 자립형 단지계획 프로토타입 설정에 관한 연구)

  • Ha, Seung-Beom
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.359-366
    • /
    • 2021
  • It's been more than 30 years since global warming by the increase in CO2 became a cause celebre worldwide. Recently the government promulgated Framework Act on on Low-Carbon Green Growth and has been continuously putting much effort into saving energy and reducing carbon dioxide emissions such as an international climate change conference to prevent the increase in CO2. However, because most cities are not planned for energy saving, new cities should be planned as the active energy-efficient urban structure for 'sustainable urban development' from a long-term perspective. This study aims to design a new prototype for the sustainable energy-independent and environment-friendly housing estates which is the nation's new vision in the era of the Fourth Industrial Revolution. A study on the energy-independent site planning and the quantitative standardization of its factor will be conducted.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Kinetics of the Reaction of Carbon Dioxide with AMP and Piperazine (AMP에 Piperazine을 첨가한 CO2 흡수 동역학)

  • Jang, Sang-Yong;Song, Ju-Seouk;Cho, Sang-Won;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.485-494
    • /
    • 2000
  • According to the worldwide interest in controlling $CO_2$ which contributes to green house effect. new techniques of reducing $CO_2$ are under development. We have developed new technique for reducing $CO_2$. In low $CO_2$ concentration. the chemical absorption method is useful. In this study. the kinetics of the reaction between $CO_2$ and the sterically hindered amine solution with piperazine. have been investigated from measurements of the rate of absorption of $CO_2$ in the stirred vessel that has a horizontal liquid-gas interface, in the temperature range $30{\sim}70^{\circ}C$. The experiments were carried out in the range 10.130~20.260 kPa of partial pressure of $CO_2$, and in aqueous $2.0kmol/m^3$ AMP solution with $0{\sim}0.4kmol/m^3$ piperazine The experimental results are as follows: 1) The absorption rate of $CO_2$ into aqueous AMP + piperazine solution is gett ng faster than that of aqueous AMP absorbents with temperature. Because the activation energy of piperazine 57.147 kJ/mol is higher than that of AMP 41.7kJ/mol. therefore the effect of piperazine on absorption rate increases with temperature. 2) Compared with aqueous AMP solution. the absorption rate of $CO_2$ into AMP + piperazine solution increases from 6.33% at $30^{\circ}C$ to 12% at $70^{\circ}C$, so AMP + piperazine solution is thought to be a better than AMP solution, 3) The reaction rate constants of piprazine in aqueous AMP solution with $CO_2$ have been determined as 217.21, 420.46, 707.00 and $3162.167m^3/kmol{\cdot}s$ respectively at 30, 40, 50 and $70^{\circ}C$ but these results are higher than those of Xu which were 186.7. 367.32. 693.01. $2207.65m^3/kmol{\cdot}s$ at 30, 40, 55, $70^{\circ}C$in aqueous MDEA solution. So the regression analysis of the data has led to the following equation In $k_p$ =28.324-6934.7/T.

  • PDF