DOI QR코드

DOI QR Code

Effects of the Elevated Temperature and Carbon Dioxide on Vine Growth and Fruit Quality of 'Campbell Early' Grapevines (Vitis labruscana)

온도와 이산화탄소의 상승처리가 포도 '캠벨얼리'의 수체생육과 과실품질에 미치는 영향

  • Son, In Chang (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science) ;
  • Han, Jeom-Haw (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Cho, Jung Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Seung Heui (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Chang, Eun-Ha (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Oh, Sung Il (Division of Special-Purpose Trees, Korea Forest Research Institute) ;
  • Moon, Kyung-Hwan (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science) ;
  • Choi, In-Myung (Fruit Research Division, National Institute of Horticultural & Herbal Science)
  • 손인창 (국립원예특작과학원 온난화대응농업연구센터) ;
  • 한점화 (국립원예특작과학원 과수과) ;
  • 조정건 (국립원예특작과학원 과수과) ;
  • 김승희 (국립원예특작과학원 과수과) ;
  • 장은하 (국립원예특작과학원 과수과) ;
  • 오성일 (국립산림과학원 특용자원연구과) ;
  • 문경환 (국립원예특작과학원 온난화대응농업연구센터) ;
  • 최인명 (국립원예특작과학원 과수과)
  • Received : 2013.04.24
  • Accepted : 2014.08.15
  • Published : 2014.12.31

Abstract

The effects of elevated temperature and $CO_2$ concentration on vine growth and characteristics of fruits of three-year-old 'Campbell Early' grapevine were investigated. The treatment groups consisted of a control group (ambient temperature and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated temperature group (ambient temperature + $4.0^{\circ}C$ and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated $CO_2$ group (ambient temperature and $700{\mu}L{\cdot}L^{-1}\;CO_2$), and an elevated $CO_2$/temperature group (ambient temperature + $4.0^{\circ}C$ and $700{\mu}L{\cdot}L^{-1}\;CO_2$). The average shoot length was 312.6 cm in the elevated $CO_2$/temperature group, which was higher than the other groups; with 206.2 cm in the control group and 255.6 cm and 224.8 cm in the elevated temperature group and elevated $CO_2$ group respectively. However, the shoot diameter showed a tendency of decreasing in the elevated temperature and elevated $CO_2$/temperature groups. The equatorial diameter of berries was increased in the higher carbon dioxide concentration, and the soluble solid content was the highest in the elevated $CO_2$ group, with $14.6^{\circ}Brix$ among all treatment groups and the lowest in the elevated temperature group ($13.9^{\circ}Brix$). The harvest date was approximately 11 d earlier in the elevated $CO_2$/temperature group and 4 to 2 days earlier in the elevated $CO_2$ group and elevated temperature group, respectively. Regarding the rate of photosynthesis and transpiration during the growth period, higher photosynthetic rates were observed in the elevated $CO_2$ group and the elevated $CO_2$/temperature group during the early stage of growth; however the photosynthetic rate was reduced dramatically in summer, which was contrary to transpiration.

본 실험은 온도와 이산화탄소 농도 상승이 3년생 '캠벨얼리' 포도의 수체 생육 및 과실특성에 미치는 영향을 구명하기 위해 수행하였다. 처리구는 대조구(대기온도, $390{\mu}L{\cdot}L^{-1}\;CO_2$), 온도 상승구(대기온도 + $4.0^{\circ}C$, $390{\mu}L{\cdot}L^{-1}\;CO_2$), 이산화탄소상승구(대기온도, $700{\mu}L{\cdot}L^{-1}\;CO_2$), 이산화탄소 + 온도 상승구(대기온도 + $4.0^{\circ}C$, $700{\mu}L{\cdot}L^{-1}\;CO_2$)로 구성되었다. 평균 신초 길이는 이산화탄소 + 온도 상승구가 312.6cm로 처리구 중 가장 높았고, 대조구는 206.2cm, 온도 상승구와 이산화탄소 상승구는 각각 255.6, 224.8cm이었다. 하지만 신초 직경은 온도 상승구와 이산화탄소 + 온도 상승구에서 감소하는 경향을 보였다. 과립 횡경은 이산화탄소 농도가 높을 수록 증가하였고, 당함량은 이산화탄소 상승구가 $14.6^{\circ}Brix$로 처리구 중 가장 높았으며 온도 상승구에서 $13.9^{\circ}Brix$로 가장 낮았다. 수확기를 조사한 결과, 이산화탄소 + 온도 상승구에서는 약 11일 정도 단축되었고, 이산화탄소 상승구와 온도 상승구는 4일과 2일이 단축되었다. 생육기 광합성과 증산량을 조사한 결과, 광합성률은 이산화탄소 상승구와 이산화탄소 + 온도 상승구의 생육초기에 높았으나, 하계에 접어들면서 급격히 감소하여 증산량과 상반되었다.

Keywords

References

  1. Adams, S.R., K.E. Cokshull, and C.R.J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits, Ann. Bot. 88:869-877.
  2. Allen, L.H. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environmental Quality 19:15-4.
  3. Buttrose, M.S. 1969. Vegetative growth of grapevine varieties under controlled temperature and light intensity. Vitis 8:280-285.
  4. Faust, M. 1989. Physiology of temperate zone fruit trees. John Wiley & Sons. Inc., New York p. 212-215.
  5. Florides, G.A. and P. Christodoulides. 2009. Global warming and carbon dioxide through sciences. Environ. Intl. 35:390-401. https://doi.org/10.1016/j.envint.2008.07.007
  6. Havaux, M., H. Greppin, and R. Strasser. 1991. Functioning of photosystem I and II in pea leaves exposed heat stress in the presence or absence of light, analysis using in vivo fluorescence, absorbance, oxygen and photoacoustic measurements. Planta 186:88-98.
  7. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007 (the physical science basis), summary for policymakers, technical summary and frequently asked questions. WMO & UNEP, Geneva p. 142.
  8. Islam, S., T. Matsui, and Y. Yoshida. 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci. Hortic. 65:137-49. https://doi.org/10.1016/0304-4238(95)00867-5
  9. Kimball, B.A., K. Kobayashi, and M. Bindi. 2002. Responses of agricultural crops to free-air $CO_2$ enrichment. Adv. Agron. 77:293-36. https://doi.org/10.1016/S0065-2113(02)77017-X
  10. Kirschbaum, M.U.F. 2000. Forest growth and species distributions in a changing climate. Tree Physiol. 20:309-322. https://doi.org/10.1093/treephys/20.5-6.309
  11. Kirschbaum, M.U.F. 2004. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol. 6:242-253. https://doi.org/10.1055/s-2004-820883
  12. Kliewer, W.M. 1977. Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. Amer. J. Enol. Vitic. 28:215-222.
  13. Korea Meteorological Administration (KMA). 2009. Climate change handbook. KMA, Seoul, Korea p. 29-34.
  14. Kwon, Y.A., W.T. Kwon, K.O. Boo, and Y. Choi. 2007. Future projections on subtropical climate regions over south Korea using SRES A1B data. The Korean Geographic Society 42:355-367.
  15. Lakso, A.N. and E.J. Seeley. 1978. Environmentally induced responses of apple tree photosynthesis. HortScience 13:646-650.
  16. Lee, I.B., S.B. Kang, and J.M. Park. 2008. Effect of elevated carbon dioxide concentration and temperature on yield ad fruit characteristics of tomato (Lycopersicon esculentum Mill.). Korean Soc. J. Environmental Agr. 27:428-434. https://doi.org/10.5338/KJEA.2008.27.4.428
  17. Lee, J.C., T. Tomana, U. Naoki, and K. Ikuo. 1979. Physiological study on the anthocyanin development in grape-I. Effect of fruit temperature on the anthocyanin development in "Kyoho" grape. J. Kor. Hort. Sci. 20:55-65.
  18. Luxmoore, R.J., S.D. Wullschleger, and P.J. Hanson. 1993. Forest responses to $CO_2$ enrichment and climate warming. Water Air Soil Pollution 70:309-323. https://doi.org/10.1007/BF01105004
  19. Medlyn, B.E., C.V.M. Barton, M.S.J. Broadmeadow, R. Ceulemans, P.D Angelis, M. Forstreuter, M. Freeman, S.B. Jackson, S. Kellomaki, E. Laitat, A. Rey, B.D. Sigurdsson, J. Strassemeyer, K. Wang, P.S. Curtis, and P.G. Jarvis. 2001. Stomatal conductance of forest species after long-term exposure to elevated $CO_2$ concentration: a synthesis. New Phytologist 149:247-264. https://doi.org/10.1046/j.1469-8137.2001.00028.x
  20. Mooney, H.A., O. Bjorkman, and G.J. Collatz. 1978. Photosynthetic acclimation to temperature in the desert Shrub, Larrea divaricata. Plant Physiol. 61:406-410. https://doi.org/10.1104/pp.61.3.406
  21. Saure, M.C. 1990. External control of anthocyanin formation in apple. Sci. Hortic. 42:181-218. https://doi.org/10.1016/0304-4238(90)90082-P
  22. Sugiura, T. 1997. Interpretation of climatic ecology response and development model to predict growth and development of pear tree. PhD Diss., Kyoto Univ., Kyoto.
  23. Tomana, T. and H. Yamada. 1988. Change in sugar composition during maturation stage of apple fruits grown at different locations. J. Japan. Soc. Hort. Sci. 57:178-183. https://doi.org/10.2503/jjshs.57.178
  24. Urban, O. 2003. Physiological impacts of elevated $CO_2$ concentration ranging from molecular to whole plant responses. Photosynthetica 41:9-20. https://doi.org/10.1023/A:1025891825050
  25. Yamane, T., S.T. Jeong, N. Goto-Yamamoto, Y. Koshita, and S. Kobayashi. 2006. Effects of temperature on anthocyanin biosynthesis in grape betty skins. Amer. J. Enol. Viticult. 57:54-59.
  26. Zamski, E. and A.A. Schaffer. 1996. Photoassimilate distribution in plants and crops (Source-sink relationships). Marcel Dekker, Inc., New York p. 851-881.